当前位置: 首页 > news >正文

石材外贸网站ip查询网站备案查询

石材外贸网站,ip查询网站备案查询,怎样做阿里巴巴网站的店招,摄像头怎么做直播网站概要 大多数LLM应用都有对话界面。对话的一个重要组成部分是能够引用对话中先前介绍的信息。至少,对话系统应该能够直接访问过去消息的某些窗口。更复杂的系统需要有一个不断更新的世界模型,这使得它能够执行诸如维护有关实体及其关系的信息之类的事情。…

概要

大多数LLM应用都有对话界面。对话的一个重要组成部分是能够引用对话中先前介绍的信息。至少,对话系统应该能够直接访问过去消息的某些窗口。更复杂的系统需要有一个不断更新的世界模型,这使得它能够执行诸如维护有关实体及其关系的信息之类的事情。

我们将这种存储过去交互信息的能力称为“记忆”。 LangChain 提供了许多用于向系统添加记忆的实用程序。这些实用程序可以单独使用,也可以无缝地合并到链中。

记忆系统需要支持两个基本操作:读和写。回想一下,每个链都定义了一些需要某些输入的核心执行逻辑。其中一些输入直接来自用户,但其中一些输入可以来自用户。在给定的运行中,一条链将与其记忆系统交互两次。

  1. 在收到初始用户输入之后但在执行核心逻辑之前,链将从其记忆系统中读取并增加用户输入。

  2. 在执行核心逻辑之后但在返回答案之前,链会将当前运行的输入和输出写入记忆,以便在将来的运行中引用它们。

在这里插入图片描述

将记忆构建到系统中

任何记忆系统中的两个核心设计决策是:

  • 状态如何存储
  • 如何查询状态

存储:聊天消息列表(Storing: List of chat messages)

任何记忆的基础都是所有聊天交互的历史记录。即使这些不全部直接使用,也需要以某种形式存储。

LangChain记忆模块的关键部分之一就是用于存储这些聊天消息的一系列集成,从记忆列表到持久数据库。

聊天消息存储:如何使用聊天消息以及提供的各种集成

查询:聊天消息之上的数据结构和算法(Querying: Data structures and algorithms on top of chat messages)

保留聊天消息列表相当简单。不太直接的是建立在聊天消息之上的数据结构和算法,它们提供了最有用的消息的视图。

一个非常简单的记忆系统可能只返回每次运行的最新消息。稍微复杂一点的记忆系统可能会返回过去 K 条消息的简洁摘要。更复杂的系统可能会从存储的消息中提取实体,并且仅返回有关当前运行中引用的实体的信息。

每个应用程序对于如何查询记忆可能有不同的要求。记忆模块应该可以轻松地开始使用简单的记忆系统,并在需要时编写您自己的自定义系统。

记忆类型:构成LangChain支持的记忆类型的各种数据结构和算法

开始使用

我们来看看LangChain中的记忆到底是什么样子的。在这里,我们将介绍与任意记忆类交互的基础知识。

我们来看看如何在链中使用ConversationBufferMemoryConversationBufferMemory 是一种极其简单的内存形式,它仅将聊天消息列表保存在缓冲区中并将其传递到提示模板中。

from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory()
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

从memory中返回哪些变量(What variables get returned from memory)

在进入链之前,从内存中读取各种变量。它有特定的名称,需要与链期望的变量保持一致。你可以通过调用memory.load_memory_variables({})来查看这些变量是什么。

请注意,我们传入的空字典只是实际变量的占位符。如果您使用的memory类型取决于输入变量,您可能需要传入一些变量。

memory.load_memory_variables({})

结果:

    {'chat_history': "Human: hi!\nAI: whats up?"}

在本例中,您可以看到 load_memory_variables 返回单个key: history。这意味着您的链(可能还有您的提示)期望输入名为:history的key。

通常可以通过memory类上的参数来控制此变量。例如,如果我们希望memory变量key为 chat_history,您可以执行以下操作:

memory = ConversationBufferMemory(memory_key="chat_history")
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

结果:

    {'chat_history': "Human: hi!\nAI: whats up?"}

控制这些键的参数名称可能因memory类型而异,但重要的是要了解:
(1) 这是可控的,
(2) 如何控制它。

记忆是字符串还是消息列表

最常见的记忆类型之一涉及返回聊天消息列表。这些可以作为单个字符串返回,全部连接在一起(当它们在 LLM 中传递时有用)或 ChatMessages 列表(当传递到 ChatModels 中时有用)。

默认情况下,它们作为单个字符串返回。为了作为消息列表返回,您可以设置 return_messages=True

memory = ConversationBufferMemory(return_messages=True)
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

结果:

    {'history': [HumanMessage(content='hi!', additional_kwargs={}, example=False),AIMessage(content='whats up?', additional_kwargs={}, example=False)]}

哪些key被保存到记忆中(What keys are saved to memory)

通常,链会接收或返回多个输入/输出键。在这些情况下,我们如何知道要将哪些键保存到聊天消息历史记录中?这通常可以通过记忆类型上的 input_keyoutput_key 参数来控制。

如果只有一个输入/输出键,则可以不用写 input_keyoutput_key 参数。但是,如果有多个输入/输出键,那么您必须指定要使用哪个输入/输出键的名称

端到端示例(End to end example)

最后,让我们看一下在链中使用它。我们将使用 LLMChain,并展示如何使用 LLMChatModel
使用LLM的例子:

from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemoryllm = OpenAI(temperature=0)
# 请注意,提示模板中存在“chat_history”
template = """你是一个很好的聊天机器人,正在与人类交谈。之前的对话:
{chat_history}新的人类问题: {question}
回复:"""
prompt = PromptTemplate.from_template(template)
# 请注意,我们需要对齐“memory_key”
memory = ConversationBufferMemory(memory_key="chat_history")
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)

结果:

# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

使用ChatModel

from langchain.chat_models import ChatOpenAI
from langchain.prompts import (ChatPromptTemplate,MessagesPlaceholder,SystemMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemoryllm = ChatOpenAI()
prompt = ChatPromptTemplate(messages=[SystemMessagePromptTemplate.from_template("你是一个很好的聊天机器人,正在与人类交谈。"),# 这里的“variable_name”必须与memory对齐MessagesPlaceholder(variable_name="chat_history"),HumanMessagePromptTemplate.from_template("{question}")]
)
# 请注意,我们将 `return_messages=True` 放入 MessagesPlaceholder
# 请注意,“chat_history”与 MessagesPlaceholder 名称一致。
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)

结果:

# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

总结

本篇讲解 聊天的历史记录: 如何存储、如何查询。

这里是使用ConversationBufferMemory类来完成存储和查询的。
也就是关键下面这段代码:

# 构建一个memory
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# 关联大模型
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)
# 查询
# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

ChatMessageHistory 公开两种方法和一个属性。
它公开的两个方法是 add_user_messageadd_ai_message,用于存储来自用户的消息相应的 AI 响应
它公开的属性是message属性,用于访问所有以前的消息。


参考地址:

https://python.langchain.com/docs/modules/memory.html

http://www.yayakq.cn/news/125750/

相关文章:

  • 做网站网页的公司公家网站模板
  • 资源网站推广成都装修公司投诉平台
  • 网站建设推广信息中国建设银行官网站安装k宝
  • 口碑好的丹徒网站建设济南网站建设开发与制作
  • 聊城做网站的公司价格用mcu做灯光效果网站
  • 做网站的升级人百度ip地址
  • 网站建设宣传词中国电子商务中心官网
  • 张家界城乡建设网站wordpress分页函数
  • 旅游网站设计说明项城网站制作多少钱
  • app制作平台收费标准谷歌seo推广
  • 大型网站制作公司上海响应式网站设计
  • 青海网站建设费用沧州网路运营中心
  • 怎么网站设计手机 登录asp网站
  • 团购网站优化医疗网络推广外包
  • 大理建网站假冒中国建设银行的网站
  • 合肥网站建设司图企业网站的特点
  • 东莞万江网站建设公司网页设计的实训报告
  • 建站之星模板下载网站投票制作网站
  • 扁平化企业网站模板山东响应式网站
  • 网站 关键词库 怎么做品牌设计有哪些东西
  • 移动端的网站邢台123最新招聘信息
  • 页面设计ui杭州seo网站
  • 制作外贸网站模板视频网站设计
  • 全国免费自学网站有哪些唐山百度快速排名提升
  • 网站开发实用技术知识点微信运营技巧
  • 25亿企业网站管理系统开发一款手机app软件需要多少钱
  • 周口哪里做网站广州站八个字
  • 用r做简易的网站关键词分析软件
  • 简单个人网站模板网站除了做流量还需要什么软件吗
  • 网络安全形势下怎么建设学校网站东莞最大的保安公司