当前位置: 首页 > news >正文

我网站关键词太多商务网站开发意义

我网站关键词太多,商务网站开发意义,wordpress 图床 插件,wordpress 解析漏洞目录detrend函数去除基线多项式拟合原函数BEADS 基线处理小波算法经验模态分解(EMD)参考detrend函数去除基线 detrend函数只能用于去除线性趋势,对于非线性的无能为力。 函数表达式:y scipy.signal.detrend(x): 从信号中删除线…

目录

  • detrend函数去除基线
  • 多项式拟合原函数
  • BEADS 基线处理
  • 小波算法
  • 经验模态分解(EMD)
  • 参考

detrend函数去除基线

detrend函数只能用于去除线性趋势,对于非线性的无能为力。

函数表达式:y = scipy.signal.detrend(x): 从信号中删除线性趋势:

x:含有基线干扰的信号;y:去除基线干扰后的信号。

detrend去基线代码显示:

from scipy import signal
import matplotlib.pyplot as plt
import numpy as npt = np.linspace(0, 5, 100)
# normal是产生一个高斯分布
x = t + np.random.normal(size=100)
plt.subplot(2, 1, 1)
plt.plot(t, x, linewidth=3)
plt.subplot(2, 1, 2)
plt.plot(t, signal.detrend(x), linewidth=3)
plt.show()

结果展示:
在这里插入图片描述
通过上图可以看到detrend去线性趋势效果很不错。

多项式拟合原函数

很容易理解,就是通过多项式拟合一个新的曲线,使拟合出来的曲线与原图像尽可能接近,同时又能去除图像中的噪声和基线等多余的因素。

代码显示为:

import os
import matplotlib.pyplot as plt
import scipy.signal
import numpy as npdef main():# 项目目录dir = "D:\\a_user_file\\8_data"filename = 's1_run.csv'path = os.path.join(dir, filename)with open(path, "r") as fname:data = fname.read()lines = data.split("\n")raw_data = []for i in range(len(lines)):line_i = lines[i].split(",")raw_data.append(int(line_i[4]))sig = raw_datatmp_smooth1 = scipy.signal.savgol_filter(sig, 53, 9)tmp_smooth2 = scipy.signal.savgol_filter(sig, 53, 3)plt.subplot(3,1,1)plt.plot(sig)plt.subplot(3,1,2)plt.plot(tmp_smooth1 * 0.5, label='mic'+ '拟合曲线-21', color='red')plt.subplot(3,1,3)plt.plot(tmp_smooth2 * 0.5, label='mic'+ '拟合曲线-53', color='green')plt.show()main()

显示结果如下:
在这里插入图片描述

BEADS 基线处理

详细内容可参考:
https://ww2.mathworks.cn/matlabcentral/fileexchange/49974-beads-baseline-estimation-and-denoising-with-sparsity?s_tid=AO_FX_info

小波算法

小波算法去噪和去基线是先用滤波器对原始信号进行分解,经过下采样得到分解的高频系数D(细节部分)和低频系数A(近似部分),多层分解只需要对上一层分解出来的低频分量继续分解即可。这个过程就是小波分解。

从分解的最底层往上重构出信号,首先是上采样,一般采用隔值插零的方法,即增加数据量来达到与原始信号长度相同的数据,然后分别通过重构的高通滤波器g和低通滤波器h,最终重构出原始信号,如果代码编写的没问题,那么重构出的信号与原始信号完全一致。

而小波变换去噪的过程就是在分解后的各层系数中找出噪声所在的层,对该层的低频系数或者高频系数进行处理,比如软硬阈值处理,处理后再经过重构,即可重构出去除噪声的信号。

import numpy as np
import matplotlib.pyplot as plt
import pywt
import osdef signal():# 项目目录dir = "D:\\a_user_file\\8_data"filename = '1.csv'path = os.path.join(dir, filename)with open(path, "r") as fname:data = fname.read()lines = data.split("\n")raw_data = []for i in range(len(lines)):line_i = lines[i].split(",")raw_data.append(int(line_i[0]))return raw_datadata = signal()
x = range(0, len(data))
w = pywt.Wavelet('db8') # 选用Daubechies8小波
maxlev = pywt.dwt_max_level(len(data), w.dec_len)
print("maximum level is " + str(maxlev))
threshold = 0.5 # Threshold for filtering
# Decompose into wavelet components, to the level selected:
coeffs = pywt.wavedec(data, 'db8', level=maxlev) # 将信号进行小波分解
for i in range(1, len(coeffs)):coeffs[i] = pywt.threshold(coeffs[i], threshold*max(coeffs[i])) # 将噪声滤波
datarec = pywt.waverec(coeffs, 'db8')plt.subplot(2,1,1)
plt.plot(data, color="black", linewidth=2.0, linestyle="solid")
plt.subplot(2,1,2)
plt.plot(datarec, color="red", linewidth=2.0, linestyle="solid")
plt.show()

用小波变换去噪的关键是找到对应噪声、基线漂移所在的频率段,去掉对应的频率段,就可以生成新的去噪去基线信号了。

经验模态分解(EMD)

EMD方法认为任何信号都可以分解为若干个不同的本征模态函数,和一个残余量稳态量。其中各个本征模态函数反映了信号的局部特性,残余量反映了信号的趋势或均值。EMD法采用“筛”选的方法从原始信号中将残余量分离出来。

参考

https://ww2.mathworks.cn/matlabcentral/fileexchange/49974-beads-baseline-estimation-and-denoising-with-sparsity?s_tid=AO_FX_info
https://blog.csdn.net/qq_41620350/article/details/115981740
https://blog.csdn.net/u010565765/article/details/69397415

http://www.yayakq.cn/news/565944/

相关文章:

  • 济南做公司网站需要多少钱外包三巨头公司
  • 员工入职 在哪个网站做招工wordpress ajax 分页插件
  • 如何做视频网站旗下账号优化大师的作用
  • 企业网站做seogoogle登录入口
  • 榆林做网站的公司电话网站和网店区别
  • 网站开发语言查看南昌网站网站建设
  • 温州市建设工程质监站网站wordpress文章列表不显示
  • 聚化网网站举例说明网络营销的方法
  • dede网站地图插件宁波代理公司注册
  • 学校网站管理网站版面如何布局
  • ps临摹图片做网站的图片犯法吗长春建站推荐
  • 北京企业免费建站湖北网站设计流程
  • 精准扶贫电商网站建设计划书企业邮箱和个人邮箱的区别
  • 手机 网站服务器wordpress多站点 缺点
  • 制定网站建设规划书关于做膳食的一些网站
  • 手机版网站案例小程序源码php
  • 庐山网站建设深圳市年检在哪个网站做
  • 河南企业网站推广wordpress ssl插件
  • 移动网站建设推广wap网站登陆系统
  • 做的网站错位怎么办承德网站建设电话
  • 网站后台上传附件网站有死链怎么办
  • 中国工业设计网站水源logo设计制作网
  • 网站的按钮怎么做的页面设计包括排版嘛
  • 网站建设需要用到的软件开发购物中心设计
  • 上海最好的网站设计公司关于做网站
  • 汕头网站推广费用上海建筑设计研究院有限公司
  • 喀什的网站怎么做视频剪辑培训比较有名的学校
  • 网站建设的需求是什么出售东西的网站怎么做
  • 万象园网站建设与开发南宁网站开发
  • 天津做网站外包公司有哪些电子商城商务平台