当前位置: 首页 > news >正文

网站免费推广策划方案重庆装修公司哪家口碑最好

网站免费推广策划方案,重庆装修公司哪家口碑最好,网站色彩的应用,如果自己做网站yolos和DETR,除了yolos没有卷积层以外,几乎所有操作都一样。 HF官方文档 因为目标检测模型,实际会输出几百几千个“框”,所以损失函数计算比较复杂。损失函数为偶匹配损失 bipartite matching loss,参考此blog targe…

yolos和DETR,除了yolos没有卷积层以外,几乎所有操作都一样。
HF官方文档

因为目标检测模型,实际会输出几百几千个“框”,所以损失函数计算比较复杂。损失函数为偶匹配损失 bipartite matching loss,参考此blog

target为class_label和box组成的字典。假设对于一张图片,我们有5个target框。
num_detection_tokens为模型对一张图最多可以产生的box的数量
简单阐述loss计算流程

  1. vit 模型,输入经过预处理的图片,输出最后隐含层状态, 大小为 [batchsize,seq_len,hidden_size]

  2. 取最后num_detection_tokens个token的隐藏状态,变为
    [batchsize,num_detection_tokens,hidden_size]

  3. 由于输出了num_detection_tokens个box,而target为5个box,所以需要进行一对一的匹配,

  4. 匹配过程:

    1. 先计算3个cost矩阵,shape均为【num_detection_tokens,num_target_box】,矩阵元素代表loss,矩阵代表对所有pred和target之间两两计算一次loss。
    2. 3个cost矩阵分别代表标签loss(交叉熵损失)、坐标loss(表示一个框的4个值的L1损失)、GIoU loss(框与框之间计算GIoU)
    3. 三个cost矩阵加权得到总体cost矩阵,大小为【num_detection_tokens,num_target_box】
    4. 对此矩阵进行linear_sum_assignment操作,得到一个匹配,此匹配下cost最小(即cost矩阵中找到不同行且不同列的5个元素,这5个元素之和最小)。匹配表示为长度为min(num_detection_tokens,num_target_box)的索引对。本例长度为5。
  5. 根据此匹配,pred和target之间计算一次loss(本例中一共计算5次loss并求和),最重loss就是上面说的3种loss的加权和

  6. 其实还有两种loss:

    1. “cardinality” loss,表示输出的num_detection_tokens个class_label中,class_label不为“无目标”的个数,与num_target_box的个数,的L1 loss. 说白了就是,除了5个框有实际的class以外,其他框应尽可能分类为“无目标”,避免检测出来目标过多。但之一loss不产生梯度,仅仅用于评估。
    2. mask loss:功能暂时不清楚

官方匹配函数,匈牙利算法

# Copied from transformers.models.detr.modeling_detr.DetrHungarianMatcher with Detr->Yolos
class YolosHungarianMatcher(nn.Module):"""This class computes an assignment between the targets and the predictions of the network.For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are morepredictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others areun-matched (and thus treated as non-objects).Args:class_cost:The relative weight of the classification error in the matching cost.bbox_cost:The relative weight of the L1 error of the bounding box coordinates in the matching cost.giou_cost:The relative weight of the giou loss of the bounding box in the matching cost."""def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):super().__init__()requires_backends(self, ["scipy"])self.class_cost = class_costself.bbox_cost = bbox_costself.giou_cost = giou_costif class_cost == 0 and bbox_cost == 0 and giou_cost == 0:raise ValueError("All costs of the Matcher can't be 0")@torch.no_grad()def forward(self, outputs, targets):"""Args:outputs (`dict`):A dictionary that contains at least these entries:* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.targets (`List[dict]`):A list of targets (len(targets) = batch_size), where each target is a dict containing:* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number ofground-truthobjects in the target) containing the class labels* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.Returns:`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:- index_i is the indices of the selected predictions (in order)- index_j is the indices of the corresponding selected targets (in order)For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)"""batch_size, num_queries = outputs["logits"].shape[:2]# We flatten to compute the cost matrices in a batchout_prob = outputs["logits"].flatten(0, 1).softmax(-1)  # [batch_size * num_queries, num_classes]out_bbox = outputs["pred_boxes"].flatten(0, 1)  # [batch_size * num_queries, 4]# Also concat the target labels and boxestarget_ids = torch.cat([v["class_labels"] for v in targets])target_bbox = torch.cat([v["boxes"] for v in targets])# Compute the classification cost. Contrary to the loss, we don't use the NLL,# but approximate it in 1 - proba[target class].# The 1 is a constant that doesn't change the matching, it can be ommitted.class_cost = -out_prob[:, target_ids]# Compute the L1 cost between boxesbbox_cost = torch.cdist(out_bbox, target_bbox, p=1)# Compute the giou cost between boxesgiou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))# Final cost matrixcost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_costcost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()sizes = [len(v["boxes"]) for v in targets]indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]

目标检测还有很多细节问题,以后更新

http://www.yayakq.cn/news/804467/

相关文章:

  • 整站优化seo平台方法seo
  • 网站管理员后台成品网站建设
  • 江西响应式网站建设哪家好荣耀手机商城官方网站
  • 有高并发 高访问量网站开发vue网站开发教程
  • 网站app建设方案手机网站建设 小程序
  • 建设一个网站需要什么人员wordpress汉化插件下载地址
  • 数字媒体应用 网站开发手机浏览网页在线代理
  • j2ee做的网站WordPress发文章同步
  • 网站建设灬金手指下拉建程网官网最新信息
  • c2c商城网站建设58网站为啥做不好
  • 中国建设银行官网站e路护航数据分析师培训
  • 陕西高速公路建设网站学习网页设计
  • 网站开发国内外研究背景阿里云域名注册企业邮箱
  • 求一个好用的网站网页设计师都在什么网站上面找素材
  • 代刷网网站建设百度资源平台
  • 网站怎么样做优化宁波seo咨询
  • php网站的优势南阳网站开发
  • 建专业外贸网站app网站如何做推广方案
  • 用wordpress做网站教程深圳公司注册中介
  • 室内设计培训网站邯郸论坛官网
  • 个人网站备案 淘宝客企业宣传片拍摄思路
  • 北京市公司网站制作网络营销课程设计心得体会
  • 做网站用哪个电脑推广平台排行榜app
  • 广州大型网站制作公司上海app开发外包
  • 网站优化需求表太原注册公司网站
  • 网站制作费用一览表海报设计分析
  • 寿光专业做网站网站开发 需求说明书
  • 云服务器价格购买价格表seo技能培训
  • 乐清联科网站建设互联网工具型网站
  • 怎么做可以访问网站连接加密上海网站开发薪资