当前位置: 首页 > news >正文

怎样为网站做推广书签制作 小学生的手工书签

怎样为网站做推广,书签制作 小学生的手工书签,wordpress 作品,wordpress门户加商城说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。

知乎专栏地址:
语音生成专栏

系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理

1.概述

SOVIT 模块的主要功能是生成最终的音频文件。

GPT-SOVITS的核心与SOVITS差别不大,仍然是分了两个部分:

  • 基于 VAE + FLOW 的生成器,源代码为 SynthesizerTrn
  • 基于多尺度分类器的鉴别器,源代码为 SynthesizerTrn

针对鉴别器相较于SOVITS5做了一些简化,主要的差异是在在生成模型处引入了残差量化层。

在训练时进入先验编码器的是经过残差量化层的 quatized 数据。

在推理时,用的是AR模块推理出的 code,然后用code直接生成 quatized 数据,再进入先验编码器。

训练所涉及特征包括:
在这里插入图片描述

2.训练流程

在这里插入图片描述

  • 如概述所注,在训练时SSL特征经过残差量化层中会产生量化编码 code 和数据 quatized。
  • 这个 code 也会作为 AR,即GPT模块训练的特征
  • 在推理时,这个code 就由 GPT 模块生成
  • 损失函数如下:
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_melloss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_klloss_fm = feature_loss(fmap_r, fmap_g)loss_gen, losses_gen = generator_loss(y_d_hat_g)loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl

3.推理流程

在这里插入图片描述
推理时直接通过先验编码器,通过FLOW的逆,进入解码器后输出推理音频

4.调试代码参考

import os,sys
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch.utils.data import DataLoaderfrom vof.vits.data_utils import (TextAudioSpeakerLoader,TextAudioSpeakerCollate,DistributedBucketSampler,
)
from vof.vits.models import SynthesizerTrn
from vof.script.utils import HParamsnow_dir   = os.getcwd()
root_dir  = os.path.dirname(now_dir)
prj_name  = 'project01'               # 项目名称
prj_dir   = root_dir + '/res/' + prj_name + '/'with open(root_dir + '/res/configs/s2.json') as f:data = f.read()data = json.loads(data)# 新增其他参数
s2_dir = prj_dir + 'logs'  # gpt 训练用目录
os.makedirs("%s/logs_s2" % (s2_dir), exist_ok=True)data["train"]["batch_size"]             = 3
data["train"]["epochs"]                 = 15
data["train"]["text_low_lr_rate"]       = 0.4
data["train"]["pretrained_s2G"]         = root_dir + '/res/pretrained_models/s2G488k.pth'
data["train"]["pretrained_s2D"]         = root_dir + '/res/pretrained_models/s2D488k.pth'
data["train"]["if_save_latest"]         = True
data["train"]["if_save_every_weights"]  = True
data["train"]["save_every_epoch"]       = 5
data["train"]["gpu_numbers"]            = 0
data["data"]["exp_dir"]                 = data["s2_ckpt_dir"] = s2_dir
data["save_weight_dir"]                 = root_dir + '/res/weight/sovits'
data["name"]                            = prj_name
data['exp_dir']                         = s2_dirhps = HParams(**data)
print(hps)
"""
self.path2 = "%s/2-name2text-0.txt" % exp_dir
self.path4 = "%s/4-cnhubert" % exp_dir
self.path5 = "%s/5-wav32k" % exp_dir
"""
train_dataset = TextAudioSpeakerLoader(hps.data)
"""
ssl  hubert 特征 [1,768,195]
spec [1025,195]
wav  [1,124800]
text [14,]
"""
train_sampler = DistributedBucketSampler(train_dataset,hps.train.batch_size,[32,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,],num_replicas=1,rank=0,shuffle=True,
)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset,batch_size=1,shuffle=False,pin_memory=True,collate_fn=collate_fn,batch_sampler=train_sampler
)def _model_forward(ssl, y, y_lengths, text, text_lengths):net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,hps.train.segment_size // hps.data.hop_length,n_speakers=hps.data.n_speakers,**hps.model,)net_g.forward(ssl, y, y_lengths, text, text_lengths)for data in train_loader:ssl_padded   = data[0]ssl_lengths  = data[1]spec_padded  = data[2]spec_lengths = data[3]wav_padded   = data[4]wav_lengths  = data[5]text_padded  = data[6]text_lengths = data[7]_model_forward(ssl_padded, spec_padded, spec_lengths, text_padded, text_lengths)
http://www.yayakq.cn/news/63346/

相关文章:

  • 国外做仿牌网站有搜索引擎作弊的网站
  • 百度网页链接长春seo推广
  • 一起做网站吧网站开发网站开发公司哪家好
  • 虚拟主机发布网站吗家庭网站建设
  • 签证网站建设wordpress英文主题破解版
  • 做网站包含什么职位怎样用网站做淘宝客
  • 河南住房和城乡建设厅网官方网站折页在线设计平台
  • 网站开发流行语言网站建设实验代码
  • 搜点济南网站建设吴江做企业网站
  • 建设模板网站学做网站多久
  • 易搜网站建设天津百度爱采购
  • 做队徽的网站angularjs后台管理系统网站
  • 网站建设网课网站建设费税率多少钱
  • wordpress极速主题合肥网站seo整站优化
  • 网页设计论文结论长沙网站优化分析
  • 凡科删除建设的网站团队拓展活动
  • 如何做挂qq的网站深圳做网站哪里最好
  • 如何做好网站优化无锡高端网站设计建设
  • 河南网站建设推广公司什么网站做蔬菜生鲜比较好
  • 中山市做网站专业的英文网站策划
  • 旅游网站开发方案做网站需要多少钱呢
  • 帮别人设计做关于图的网站wordpress可以做论坛
  • 企业网站排行榜网站程序购买
  • 自己做文字壁纸的网站深圳装修网站建设
  • 1688阿里巴巴网官网下载重庆快速排名优化
  • 专业网站设计服务商电商网站建设怎么样
  • 莲花网站网站优化推广公司排名
  • 东莞网站建设排名google 云 wordpress
  • 怎么做彩票网站的代理网站备案丢失
  • 站长工具seo综合查询 正品蓝导航网站建设朱宁