当前位置: 首页 > news >正文

吉安公司做网站营销型网站建设方案演讲ppt

吉安公司做网站,营销型网站建设方案演讲ppt,页面设计包括哪些方面,成都企业网站开发报告链接:https://stability.ai/news/stable-diffusion-3-research-paper 文章目录 要点表现架构细节通过重新加权改善整流流量Scaling Rectified Flow Transformer Models灵活的文本编码器RF相关论文 要点 发布研究论文,深入探讨Stable Diffuison 3的…

报告链接:https://stability.ai/news/stable-diffusion-3-research-paper
在这里插入图片描述

文章目录

  • 要点
  • 表现
  • 架构细节
  • 通过重新加权改善整流流量
  • Scaling Rectified Flow Transformer Models
  • 灵活的文本编码器
  • RF相关论文

要点

  • 发布研究论文,深入探讨Stable Diffuison 3的底层技术
  • 基于人类偏好评估,Stable Diffusion 3 在排版和提示遵守方面优于最先进的文本到图像生成系统,例如 DALL·E 3、Midjourney v6 和 Ideogram v1
  • 新的多模态扩散Transformer (MMDiT) 架构对图像和语言表示使用单独的权重集合,与以前版本的 SD3 相比,这提高了文本理解和拼写能力

继宣布 Stable Diffusion 3 的早期预览版之后,又发布了一份研究论文,概述了即将发布的模型的技术细节。

表现

在这里插入图片描述

以 SD3 作为基线,根据人类对视觉美学、提示跟随和版式的评估,概述其与竞争模型对比情况

将 Stable Diffusion 3 的输出图像与其他各种开放模型(包括 SDXL、SDXL Turbo、Stable Cascade、Playground v2.5 和 Pixart-α)以及闭源系统(如 DALL·E 3、Midjourney v6 和 Ideogram v1)进行基于人类反馈的性能对比。在这些测试中,向人类评估者提供了每个模型的示例输出,并要求他们根据模型输出与提示上下文的紧密程度(“提示跟随”)、基于提示的文本呈现程度(“排版”)以及哪幅图像具有更高的美学质量(“视觉美学”)来选择最佳结果。

测试结果表明Stable Diffusion 3在所有上述领域都等于或优于当前最先进的文本到图像生成系统。在早期的消费者硬件上进行的未优化推理测试中,最大的SD3模型具有8B个参数,适合RTX 4090的24GB VRAM,当使用50个采样步骤时,需要34秒能生成分辨率为1024x1024的图像。此外,Stable Diffusion 3在首次发布期间将有多种变体,从800M到8B的参数模型,以进一步消除硬件障碍。

架构细节

对于文本到图像的生成,SD3模型考虑文本和图像这两种模式,这是为什么将这种新架构称为 MMDiT,指的是它处理多种模式的能力。与之前版本的稳定扩散一样,使用预训练模型来导出合适的文本和图像表示。具体来说,SD3使用三种不同的文本嵌入器(两个 CLIP 模型和 T5)来编码文本表示,并使用改进的自动编码模型来编码图像tokens。
在这里插入图片描述

MMDIT

SD3 架构建立在 DiT 的基础上。由于文本和图像嵌入在概念上完全不同,因此对这两种模式使用两组独立的权重。如上图所示,这相当于每种模态都有两个独立的Transformers,但是将两种模态的序列连接起来进行注意力操作,这样两种表示都可以在自己的空间中工作,同时考虑另一种表示。
在这里插入图片描述
训练过程中测量视觉保真度和文本对齐,MMDiT 架构优于已建立的文本到图像主干,UViT 和 DiT

通过使用这种方法,信息可以在图像和文本标记之间流动,以提高生成的输出中的整体理解和排版。正如在论文中讨论的那样,这种架构还可以轻松扩展到视频等多种模式。
在这里插入图片描述
得益于 Stable Diffusion 3 改进的提示跟随功能,模型能够创建专注于各种不同主题和质量的图像,同时对图像本身的风格保持高度灵活性。
在这里插入图片描述
在这里插入图片描述

通过重新加权改善整流流量

Stable Diffusion 3 采用整流流 (RF) 公式(相关论文),其中数据和噪声在训练期间以线性轨迹连接。这会产生更直的推理路径,从而允许用更少的步骤进行采样。此外,在训练过程中引入了一种新颖的轨迹采样计划。这个schedule给予轨迹的中间部分更多的权重,因为假设这些部分会导致更具挑战性的预测任务。使用多个数据集、指标和采样器设置进行比较,针对 60 个其他扩散轨迹(例如 LDM、EDM 和 ADM)对比测试。结果表明,虽然以前的 RF 公式在少步采样方案中表现出改进的性能,但它们的相对性能随着步数的增加而下降。相比之下,重新加权的 RF 变体不断提高性能。

Scaling Rectified Flow Transformer Models

在这里插入图片描述
使用重新加权的整流流公式和 MMDiT 主干对文本到图像的合成进行了缩放研究。训练模型范围从具有 15 个blocks的450M 参数到具体 38 个blocks的 8B 参数,并观察到验证损失随着模型大小和训练步骤的函数而平滑下降(上行)。为了测试这是否转化为模型输出的有意义的改进,还评估了自动图像对齐指标 (GenEval) 以及人类偏好评分 (ELO)(下行)。结果表明这些指标与验证损失之间存在很强的相关性,表明后者是整体模型性能的有力预测因子。此外,扩展趋势没有显示出饱和的迹象,可乐观地认为未来可以继续提高模型的性能。

灵活的文本编码器

通过移除用于推理的内存密集型 4.7B 参数 T5 文本编码器,SD3 的内存需求可以显着降低,而性能损失很小。删除此文本编码器不会影响视觉美感(无 T5 的胜率:50%),只会导致文本依从性略有下降(胜率 46%),如上图“性能”部分下所示。然而,建议包括 T5,以充分利用 SD3 生成书面文本的能力,因为观察到,如果没有 T5,版式生成的性能会大幅下降(胜率 38%),如下例所示:
在这里插入图片描述

RF相关论文

  • Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
  • Building Normalizing Flows with Stochastic Interpolants
  • Flow Matching for Generative Modeling
http://www.yayakq.cn/news/244670/

相关文章:

  • 出国留学网站开发公司网站建设前期方案
  • 网站网页的书签怎么做苏州公司网站建设报价
  • 网站快速备案安全吗网站后台html编辑器
  • 兰州中川国际机场t3航站楼wordpress 备案号插件
  • 网站做的好的公司名称专业建站网站服务
  • 做网站推荐嘉兴市建设官方网站
  • 免费装修效果图网站小程序哪家公司做的好
  • 做网赌网站做程序员需要什么条件
  • 我的世界皮肤网站做网页设计的标准尺寸
  • 网站建设与推广策划案案例wordpress 支持数据库
  • 班级网站开发环境wordpress 显示子菜单
  • 从零开始学做网站 网站百度上海分公司
  • 菏泽网站备案拍照最新logo设计大赛
  • 许昌做网站汉狮网络网站建设app下载
  • 金湖建设局网站cad做彩图那个网站应用好用
  • 广东住房和城乡建设厅官方网站制作销售网站有哪些
  • 建设工程消防验收网站雏鸟app网站推广
  • 网站开发一般多钱网站导航栏怎么做
  • 西安企业网站排名优化工具珠宝行网站建设方案
  • 网站仿制成都网站建设门户
  • 自己服务器做网站如何备案太平保宝app免费下载二维码
  • 郓城微信网站建设视频类网站如何做缓存
  • 制作响应式网站报价有哪些做淘宝素材的网站
  • 模板建站哪里有淘宝seo是什么意思啊
  • 祥云平台英文网站网站开发python
  • 洋县住房和城乡建设管理局网站制作网站好的公司
  • 图片网站 模板wordpress post 模板
  • 上海网站建设 乐云seo做网站的公司成都
  • com网站注册域名网站开发维护入哪个科目
  • 百度站长平台wordpress怎么上传电影