当前位置: 首页 > news >正文

建设项目竣工验收公告网站做网站编辑需要具备的素质

建设项目竣工验收公告网站,做网站编辑需要具备的素质,公司网站模板 网盘下载,商户后台管理系统1. OpenCV 级联分类器的基本原理 基于Haar特征的级联分类器的目标检测是Paul Viola和Michael Jones在2001年的论文中提出的一种有效的目标检测方法。这是一种基于机器学习的方法,从大量的正面和负面图像中训练级联函数。然后用它来检测其他图像中的物体。 Haar特征…

1. OpenCV 级联分类器的基本原理

基于Haar特征的级联分类器的目标检测是Paul Viola和Michael Jones在2001年的论文中提出的一种有效的目标检测方法。这是一种基于机器学习的方法,从大量的正面和负面图像中训练级联函数。然后用它来检测其他图像中的物体。

Haar特征是一种反映图像的灰度变化的,像素分模块求差值的一种特征。它分为三类:边缘特征、线性特征、中心特征和对角线特征。就像卷积核一样。每个特征都是一个单独的值,由黑色矩形下的像素和减去白色矩形下的像素和得到。用黑白两种矩形框组合成特征模板,在特征模板内用 黑色矩形像素和减去白色矩形像素和来表示这个模版的特征值。
在这里插入图片描述
例如:脸部的一些特征能由矩形模块差值特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述在特定方向(水平、垂直、对角)上有明显像素模块梯度变化的图像结构。这样就可以进行区分人脸。

级联分类器(Cascade Classifier)是一种用于目标检测的机器学习模型,通常用于识别静态图像或视频流中的特定对象或物体。级联分类器的一个重要应用是人脸检测。

级联分类器基于强分类器的级联结构,其中每个强分类器都是由多个弱分类器组成的。弱分类器是一种简单而不太准确的分类器,但通过级联结构及其组合,可以达到高效且精确的目标检测效果。

2. 级联分类器CascadeClassifier检测的基本原理:

Haar特征分类器就是一个XML文件,用于存储检测特征,xml中存放的是训练后的特征池,特征size大小根据训练时的参数而定,检测的时候可以简单理解为就是将每个固定size特征(检测窗口)与输入图像的同样大小区域比较,如果匹配那么就记录这个矩形区域的位置,然后滑动窗口,检测图像的另一个区域,重复操作。由于输入的图像中特征大小不定,比如在输入图像中眼睛是50x50的区域,而训练时的是25x25,那么只有当输入图像缩小到一半的时候,才能匹配上,所以这里还有一个逐步缩小图像,也就是制作图像金字塔的流程。

利用Opencv自带的Haar特征分类器进行人脸检测,该文件中会描述人体各个部位的Haar特征值。包括人脸、眼睛、嘴唇等等。Haar特征分类器存放目录:OpenCV安装目录中的\data\ haarcascades目录下。

3. 静态图中车辆识别

from PIL import Image
import cv2
import numpy as npimage = Image.open('V1.png')
w,h = image.size
#image = image.resize((int(w/2),int(h/2)))
image_arr = np.array(image)
image

在这里插入图片描述

grey = cv2.cvtColor(image_arr,cv2.COLOR_BGR2GRAY)
dilated = cv2.dilate(blur,np.ones((3,3)))kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
closing = cv2.morphologyEx(dilated, cv2.MORPH_CLOSE, kernel) 
Image.fromarray(closing)

在这里插入图片描述

car_cascade_src = 'haarcascade_car.xml'
car_cascade = cv2.CascadeClassifier(car_cascade_src)
cars = car_cascade.detectMultiScale(closing, 1.1, 1)
cnt = 0
for (x,y,w,h) in cars:cv2.rectangle(image_arr,(x,y),(x+w,y+h),(255,0,0),2)cnt += 1
print(cnt, " cars found")
Image.fromarray(image_arr)
21  cars found

在这里插入图片描述

4. 动态视频中车辆识别

import cv2
import numpy as npcar_classifier= cv2.CascadeClassifier('haarcascade_car.xml')
cap= cv2.VideoCapture('cars.avi')while True:    ret, frame= cap.read()if ret:#frame= cv2.resize(frame, None, fx= 0.5, fy= 0.5, interpolation= cv2.INTER_LINEAR)gray= cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)cars= car_classifier.detectMultiScale(gray,1.2,3)for (x,y,w,h) in cars:cv2.rectangle(frame,(x,y),(x+w,y+h), (0,255,255),2)cv2.imshow('Cars', frame)else:print('warning: video is not load correctly or the video is finished')breakkey = cv2.waitKey(1)   #每一帧图像就显示一毫秒就可以,然后继续循环if key == 27:          #27是esc的ascall码break            cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

5. 关键OpenCV函数说明

cv2.CascadeClassifier.detectMultiScale() 函数介绍
在 OpenCV 中,人脸检测使用的是 cv2.CascadeClassifier.detectMultiScale()函数,它可以检
测出图片中所有的人脸。该函数由分类器对象调用,其语法格式为:

objects = cv2.CascadeClassifier.detectMultiScale( image[,
scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]] )

式中各个参数及返回值的含义为:

  • image:待检测图像,通常为灰度图像。
  • scaleFactor:表示在前后两次相继的扫描中,搜索窗口的缩放比例。
  • minNeighbors:表示构成检测目标的相邻矩形的最小个数。默认情况下,该值为 3,意味着有 3 个以上的检测标记存在时,才认为人脸存在。如果希望提高检测的准确率,可以将该值设置得更大,但同时可能会让一些人脸无法被检测到。
  • flags:该参数通常被省略。在使用低版本 OpenCV(OpenCV 1.X 版本)时,它可能会被设置为 CV_HAAR_DO_CANNY_PRUNING,表示使用 Canny 边缘检测器来拒绝一些区域。
  • minSize:目标的最小尺寸,小于这个尺寸的目标将被忽略。
  • maxSize:目标的最大尺寸,大于这个尺寸的目标将被忽略。
  • objects:返回值,目标对象的矩形框向量组。

代码中所涉及到的模型和视频等资源,详见OpenCV级联分类器识别车辆实践笔记中所涉及到的资源。

参考:

小海聊智造. opencv 进阶10-人脸识别原理说明及示例-cv2.CascadeClassifier.detectMultiScale(). CSDN博客. 2023.08
Stray_Lambs. 浅析cv2.CascadeClassifier()函数. CSDN博客. 2019.09
HAMED ETEZADI ·Haar cascade classifier-Car Detection. Kaggle. 2022.04
How to Detect Cars in a Video in Python using OpenCV. Learning about Electronics

http://www.yayakq.cn/news/490699/

相关文章:

  • 手机网站菜单栏怎么做深圳网站建设号
  • php怎么写购物网站商品显示页面上海装修公司排名前十强是哪十家
  • 山东济宁省建设厅官方网站微博建网站
  • 学校网站建设发展规划apm安装wordpress网页无法访问
  • 承德手机网站建设重庆网络技术有限公司
  • 网站上360 旋转的图是怎么做的网络管理系统分为哪些层次
  • 服装网站建设平台分析做外贸网站的经验
  • php做网站流程wordpress热门插件
  • 网站上官网标识怎么做网站备案 信息查询
  • 怎样做网站和网站的友情链接杭州定制网站开发
  • 苏州网站设计公司有哪些如何申请网站域名流程
  • 网站栏目页如何做店铺运营方案策划
  • 网站网页建设一般多少钱西地那非副作用太强了
  • 无锡鸿源建设集团有限公司网站网页设计公司有哪些在包头的
  • 内蒙古建设银行网站深圳专业网站设计公司价格
  • 沈阳中小企业网站建设广告网眼布
  • 中小学学校网站建设洛龙区网站制作建设费用
  • 二道网站建设福田祥菱官网
  • 现在收废品做哪个网站好网站标题会影响吗
  • 深圳彩票网站开发人员网站做端口是什么情况
  • 小网站链接怎么找中介网站怎么做
  • 个人网站做百度竞价深圳网站优化方案
  • wordpress 后门软件网站优化排名易下拉排名
  • 做网站开发很赚钱吗wordpress 3.6.1
  • 网站开发工程师缺口自媒体营销代理
  • 北京公司网站制作方法推广普通话奋进新征程海报
  • 东港区网站制作网站地图在线制作工具
  • 网站上线 文案网络整合营销是什么意思
  • 一个网站两个空间西安保障性住房建设投资中心网站
  • 雅安城乡住房建设厅网站wordpress htaccess文件