当前位置: 首页 > news >正文

网站建设技术入股协议分类信息网站开发教程

网站建设技术入股协议,分类信息网站开发教程,网站策划是干什么的,抖音代运营合同文件目录 一. 软间隔模型1. 松弛因子的解释小节 2. SVM软间隔模型总结 线性可分SVM中,若想找到分类的超平面,数据必须是线性可分的;但在实际情况中,线性数据集存在少量的异常点,导致SVM无法对数据集线性划分 也就是说&…

目录

  • 一. 软间隔模型
    • 1. 松弛因子的解释
      • 小节
    • 2. SVM软间隔模型总结

线性可分SVM中,若想找到分类的超平面,数据必须是线性可分的;但在实际情况中,线性数据集存在少量的异常点,导致SVM无法对数据集线性划分

也就是说:正常数据本身是线性可分的,但是由于存在异常点数据,导致数据集不能够线性可分
在这里插入图片描述

一. 软间隔模型

为了解决上述问题,我们引入软间隔的概念:

1. 松弛因子的解释

  • 硬间隔: 线性划分SVM中的硬间隔是距离度量;在线性划分SVM中,要求函数距离一定是大于等于1的,最大化硬间隔条件为: { m i n 1 2 ∥ w → ∥ 2 s . t : y ( i ) ( ω T ⋅ x ( i ) + b ) ≥ 1 , i = 1 , 2 , . . . , m \left\{\begin{matrix}min\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} \\s.t: y^{(i)} (\omega ^{T}\cdot x^{(i)} +b)\ge1,i=1,2,...,m \end{matrix}\right. {min21 w 2s.ty(i)(ωTx(i)+b)1i=1,2,...,m
  • 软间隔:SVM对于训练集中的每个样本都引入一个松弛因子(ξ),使得函数距离加上松弛因子后的值是大于等于1; y ( i ) ( ω T ⋅ x ( i ) + b ) ≥ 1 − ξ ; i = 1 , 2 , . . . , m , ξ ≥ 0 y^{(i)} (\omega ^{T}\cdot x^{(i)} +b)\ge1-\xi ;i=1,2,...,m,\xi\ge 0 y(i)(ωTx(i)+b)1ξi=1,2,...,mξ0

松弛因子(ξ)表示:相对于硬间隔,对样本到超平面距离的要求放松了

ξ = 0 ξ=0 ξ=0 , 相当于硬间隔
0 < ξ < 1 0<ξ<1 0<ξ<1 , 相当于样本点位于“街”内
ξ > 1 ξ>1 ξ>1 , 相当于样本点位于“街”对面
ξ > 2 ξ>2 ξ>2 , 相当于样本点位于“街”对面外侧

注意: ξ ξ ξ只能对少量的样本起作用

ξ ξ ξ越大,表示样本点离超平面越近,
ξ > 1 ξ>1 ξ>1,那么表示允许该样本点分错

因此:加入松弛因子是有成本的,过大的松弛因子可能会导致模型分类错误

所以,我们对存有异常点的数据集划分时,目标函数就变成了:
{ m i n 1 2 ∥ w → ∥ 2 + C ∑ i = 1 n ξ ( i ) y ( i ) ( ω T ⋅ x ( i ) + b ) ≥ 1 − ξ ( i ) , i = 1 , 2 , . . . , m \left\{\begin{matrix}min\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2}+C\sum_{i=1}^{n} \xi _{(i)} \\ \\y^{(i)} (\omega ^{T}\cdot x^{(i)} +b)\ge1-\xi ^{(i)} ,i=1,2,...,m \end{matrix}\right. min21 w 2+Ci=1nξ(i)y(i)(ωTx(i)+b)1ξ(i)i=1,2,...,m
ξ i ≥ 0 , i = 1 , 2 , . . . , m \xi{i}\ge 0,i=1,2,...,m ξi0i=1,2,...,m

公式 C ∑ i = 1 n ξ ( i ) C\sum_{i=1}^{n} \xi _{(i)} Ci=1nξ(i)表式:

    每个样本惩罚项的总和不能大,函数中的C>0是惩罚参数,需要调参

C越大,表示对错误分类的惩罚越大,也就越不允许存在分错的样本;

C越小表示对误分类的惩罚越小,也就是表示允许更多的分错样本存在

也就是说:
对于完全线性可分的数据来说,C的值可以给大一点
对于线性可分但存在异常的数据来说,C的值需要调小

小节

对于线性可分的m个样本(x1,y1),(x2,y2)… :

	x为n维的特征向量y为二元输出,即+1,-1

SVM的输出为w,b,分类决策函数

选择一个惩罚系数C>0,构造约束优化问题

{ min ⁡ β ≥ 0 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) − ∑ i = 1 m β i s . t : ∑ i = 1 m β i y ( i ) = 0 , 0 ≤ β i ≤ C , i = 1 , 2 , . . . , m \left\{\begin{matrix}\min_{\beta \ge 0}\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)}-\sum_{i=1}^{m} \beta _{i} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0,0\le \beta _{i}\le C,i=1,2,...,m \end{matrix}\right. {minβ021i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)i=1mβis.t:i=1mβiy(i)=00βiCi=1,2,...,m
使用SMO算法求出上述最优解 β \beta β
找到所有支持向量集合:
S = ( x ( i ) , y ( i ) ) ( 0 < β i < C , i = 1 , 2 , . . . , m ) S = (x^{(i)}, y^{(i)}) (0<\beta_{i} < C,i=1,2,...,m) S=(x(i),y(i))(0<βi<C,i=1,2,...,m)
从而更新w,b

w = ∑ i = 1 m β i x ( i ) y ( i ) w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} w=i=1mβix(i)y(i)

b = 1 S ∑ i = 1 S ( y s − ∑ i = 1 m β i x ( i ) T y ( i ) x s ) b=\frac{1}{S} \sum_{i=1}^{S}(y^{s}- \sum_{i=1}^{m} \beta _{i} x^{(i)^{T}}y^{(i)}x^{s} ) b=S1i=1S(ysi=1mβix(i)Ty(i)xs)

构造最终的分类器,为:
f ( x ) = s i g n ( w ∗ x + b ) f(x)=sign(w\ast x+b) f(x)=sign(wx+b)

	x<0时,y=-1x=0时,y=0x>0时,y=1注意:假设,不会出现0若出现,正负样本随意输出一个,即+0.00000001或-0.00000001都可以

2. SVM软间隔模型总结

	可以解决线性数据中存在异常点的分类模型构建问题通过引入松弛因子,可以增加模型的泛化能力,即鲁棒性;对于模型而言:如果给定的惩罚项系数C越小,表示在模型构建的时候,就允许存在越多的分类错误的样本,也就表示此时模型的准确率会比较低;如果惩罚项系数越大,表示在模型构建的时候,就越不允许存在分类错误的样本,也就表示此时模型的准确率会比较高。

感谢阅读🌼
如果喜欢这篇文章,记得点赞👍和转发🔄哦!
有任何想法或问题,欢迎留言交流💬,我们下次见!

祝愉快🌟!


http://www.yayakq.cn/news/699436/

相关文章:

  • 百度云网站建设教程视频看房子的网站
  • wordpress列表seo推广关键词公司
  • 制作网页和做网站是一个意思吗国家免费技能培训有哪些
  • 交通设施东莞网站建设wordpress 文章倒序
  • 亚马逊如何做站外促销网站网站到底是域名需要备案还是空间
  • 网络科技网站有哪些方面网站游戏网站开发
  • 苏州培训网站建设做旅游网站的目的是什么
  • 江门阿里巴巴网站建设网站的创新点
  • 自己做游戏网站学什么网站页面设计具体步骤
  • 政务网站建设建议建网站网站建设
  • 做网站贵不贵广州代做公司网站
  • 唐山哪个公司做网站做手机软件需要学什么
  • dede免费手机网站模板天津建设电工证查询网站
  • 珠海市网站设计公司西安市seo排名按天优化
  • 如何做网站推广的策略做初中数学题的网站
  • 网站策划搭建方案wordpress 免插件统计
  • 香格里拉网站建设站长工具seo综合查询怎么使用的
  • 网站优点缺点php语言做的大网站
  • 用什么软件做动漫视频网站好免费的企业宣传模板
  • 服务器2003系统如何建设网站刚刚济南最新发布
  • 佛山住房和城乡建设部网站网站开发博客
  • 中文网站怎么做英文版全网热搜榜
  • 茶山东莞网站建设成全视频高清免费观看好听的歌
  • 新建设电影院+网站开广告公司怎样跑生意
  • 刷题网站怎么做哈尔滨seo优化软件
  • 招聘网站推广怎么做北京网站建设最新消息
  • 创建网站的六个步骤用户体验 网站
  • 电子商务网站开发环境网站开发难吗
  • 龙岗网站建设找深一设计家官网下载
  • 陕西有哪些公司是网站建设网站开发与设计实验报告