当前位置: 首页 > news >正文

个人主题网站设计论文洛可可设计公司现状

个人主题网站设计论文,洛可可设计公司现状,北滘建网站,wordpress调用标签文章🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人! 🌙个人主页:阿芒的主页 ⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学…

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

文章目录

  • 向量的数量积
  • 向量的向量积

向量的数量积

  1. 定义:

设向量a→\overrightarrow{a}a,b→\overrightarrow{b}b的夹角为θ\thetaθ,称
∣a→∣∣b→∣cos|\overrightarrow{a}||\overrightarrow{b}|cosa∣∣bcos θ\thetaθ记作a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}aba→\overrightarrow{a}ab→\overrightarrow{b}b数量积(点积、内积)

  1. 性质

(1)a→⋅a→\overrightarrow{a}\cdot\overrightarrow{a}aa=∣a→∣2|\overrightarrow{a}|^{2}a2
(2)a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量,则有a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=0⟺\Longleftrightarrowa→⊥b→\overrightarrow{a}\bot\overrightarrow{b}ab

注:由于零向量的方向是任意的,所有规定零向量与任何向量都垂直.

  1. 运算规律

(1)交换律:a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=b→⋅a→\overrightarrow{b}\cdot\overrightarrow{a}ba
(2)结合律:(λa→)⋅b→(\lambda\overrightarrow{a})\cdot\overrightarrow{b}(λa)b=a→⋅(λb→)\overrightarrow{a}\cdot(\lambda\overrightarrow{b})a(λb)=λ(a→⋅b→)\lambda(\overrightarrow{a}\cdot\overrightarrow{b})λ(ab)
~~~~~~~~~~~~~~~~~                 (λa→)⋅(μb→)(\lambda\overrightarrow{a})\cdot(\mu\overrightarrow{b})(λa)(μb)=λ(a→⋅(λb→))\lambda(\overrightarrow{a}\cdot(\lambda\overrightarrow{b}))λ(a(λb))=λμ(a→⋅b→)\lambda\mu(\overrightarrow{a}\cdot\overrightarrow{b})λμ(ab)(其中λ,μ\lambda,\muλμ为实数)
(3)分配律:(a→+b→)⋅c→(\overrightarrow{a}+\overrightarrow{b})\cdot\overrightarrow{c}(a+b)c=a→⋅c→\overrightarrow{a}\cdot\overrightarrow{c}ac+b→⋅c→\overrightarrow{b}\cdot\overrightarrow{c}bc

  1. 坐标表示
  • a→\overrightarrow{a}a=axi→+ayj→+azk→a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k}axi+ayj+azk,b→\overrightarrow{b}b=bxi→+byj→+bzk→b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k}bxi+byj+bzk,则
    a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=axbx+ayby+azbza_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}axbx+ayby+azbz

  • 两向量夹角公式
    a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量时,由于a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=∣a→∣∣b→∣cos|\overrightarrow{a}||\overrightarrow{b}|cosa∣∣bcos θ\thetaθ,从而
    cosθcos\thetacosθ= a→⋅b→∣a→∣∣b→∣\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}a∣∣bab=axbx+ayby+azbzax2+ay2+az2bx2+by2+bz2\frac{a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}}{ \sqrt{a^{2}_{x}+a^{2}_{y}+a^{2}_{z} }\sqrt{b^{2}_{x}+b^{2}_{y}+b^{2}_{z} }}ax2+ay2+az2bx2+by2+bz2axbx+ayby+azbz

  • 两向量垂直的充要条件
    a→⊥b→\overrightarrow{a}\bot\overrightarrow{b}ab⟺\Longleftrightarrowaxbx+ayby+azbz=0a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}=0axbx+ayby+azbz=0


向量的向量积

  1. 定义

设向量a→\overrightarrow{a}a,b→\overrightarrow{b}b的夹角为θ\thetaθ,定义
向量c→\overrightarrow{c}c:①方向:c→⊥a→\overrightarrow{c}\bot\overrightarrow{a}ca,c→⊥b→\overrightarrow{c}\bot\overrightarrow{b}cb且符合右手规则
~~~~~~~~~~~~~              ②模:∣c→∣|\overrightarrow{c}|c=∣a→∣∣b→∣sin|\overrightarrow{a}||\overrightarrow{b}|sina∣∣bsin θ\thetaθ
c→\overrightarrow{c}ca→与b→\overrightarrow{a}与\overrightarrow{b}ab为的向量积(叉积),记作c→\overrightarrow{c}c=a→×b→\overrightarrow{a}×\overrightarrow{b}a×b

  1. 性质

(1)a→×a→\overrightarrow{a}×\overrightarrow{a}a×a=0→\overrightarrow{0}0
(2)a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量,则有a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=0⟺\Longleftrightarrowa→∥b→\overrightarrow{a}\parallel\overrightarrow{b}ab

  1. 运算规律

(1)a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=-b→×a→\overrightarrow{b}×\overrightarrow{a}b×a
(2)结合律:(λa→)×b→(\lambda\overrightarrow{a})×\overrightarrow{b}(λa)×b=a→×(λb→)\overrightarrow{a}×(\lambda\overrightarrow{b})a×(λb)=λ(a→×b→)\lambda(\overrightarrow{a}×\overrightarrow{b})λ(a×b)
(3)分配律:(a→+b→)×c→(\overrightarrow{a}+\overrightarrow{b})×\overrightarrow{c}(a+b)×c=a→×c→\overrightarrow{a}×\overrightarrow{c}a×c+b→×c→\overrightarrow{b}×\overrightarrow{c}b×c

  1. 坐标表示
  • a→\overrightarrow{a}a=axi→+ayj→+azk→a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k}axi+ayj+azk,b→\overrightarrow{b}b=bxi→+byj→+bzk→b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k}bxi+byj+bzk,则
    a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=(aybz−azby)i→+(azbx−axbz)j→+(axby−aybx)k→(a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j}+(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k}(aybzazby)i+(azbxaxbz)j+(axbyaybx)k
  • 两个向量积的行列式表示
    a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=(aybz−azby)i→+(azbx−axbz)j→+(axby−aybx)k→(a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j} +(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k}(aybzazby)i+(azbxaxbz)j+(axbyaybx)k = ∣i→j→k→axayazbxbybz∣\left| \begin{array}{cccc} \overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\ a_{x}&a_{y}&a_{z}\\ b_{x}&b_{y}&b_{z}\\ \end{array} \right| iaxbxjaybykazbz

http://www.yayakq.cn/news/201182/

相关文章:

  • 无锡网站关键词优化网站开发中为什么有两个控制层
  • 做网站的是如何赚钱的中建招聘官网入口
  • 个人如何做公益网站单页关键词优化费用
  • .net网站开发技术简介网站做营销推广
  • 网站建设明薇通网络服务好徐州网站建设xzqjw
  • 网站建设公司 枫子伽叩找程序员的网站
  • 网站 自定义表单wordpress仿多特
  • 类似快手网站开发网页设计个人页面
  • 怎么样建一个网站局域网如何建网站
  • 网站备案在哪查申请了域名怎么建网站
  • 网站建设的广告语wordpress外链图床插件
  • 建设网站业务竞争大石家庄最新消息今天
  • 手机建站教程建设维护网站 未签订合同
  • 国内的有什么好wordpress主题微信seo是什么意思
  • h5网站实例小程序模板免费下载
  • 网站开发与设计500强公司页面设计在哪儿
  • 特色网站建设高匿代理ip
  • 上海省住房与城乡建设厅网站怎么做别人网站销售的东西公证
  • 网站开发 网络工程 哪个好游戏优化大师
  • 网站编辑外包建站公司学习
  • 深圳分销网站设计中国建设银行官网查询
  • 网站注册地址彩虹网站建设
  • 制作自己的网站多少钱wordpress 支付宝捐赠
  • 下载的网站模板怎么使用wordpress多域一网
  • 南阳网站改版wordpress 获取置顶文章
  • 重庆微信网站建设报价表如何进入google网站
  • 哪些大型网站有做互联网金融小视频剪辑app哪个好
  • 专业制作网站公司吗药品网站网络营销推广怎么做
  • 英语营销型网站建设贵州百度推广优化报告
  • 企业建站有什么好处做网站需要好多图片