当前位置: 首页 > news >正文

河南住房和城乡建设厅网站个人网页内容需要哪些

河南住房和城乡建设厅网站,个人网页内容需要哪些,百度网络营销app下载,优秀的商城网站首页设计Python自动化测试-使用Pandas来高效处理测试数据 目录:导读 一、思考 二、使用pandas来操作Excel文件 三、使用pandas来操作csv文件 四、总结 一、思考 1.Pandas是什么? 功能极其强大的数据分析库可以高效地操作各种数据集 csv格式的文件Excel文件H…

 Python自动化测试-使用Pandas来高效处理测试数据

目录:导读

一、思考

二、使用pandas来操作Excel文件

三、使用pandas来操作csv文件

四、总结


一、思考

1.Pandas是什么?

  • 功能极其强大的数据分析库
  • 可以高效地操作各种数据集
    • csv格式的文件
    • Excel文件
    • HTML文件
    • XML格式的文件
    • JSON格式的文件
    • 数据库操作

2.经典面试题

通过面试题引出主题,读者可以思考,如果你遇到这题,该如何解答呢?

二、使用pandas来操作Excel文件

1.安装

a.通过Pypi来安装

pip install pandas

b.通过源码来安装

git clone git://github.com/pydata/pandas.git
cd pandas
python setup.py install

2.按列读取数据

案例中的lemon_cases.xlsx文件内容如下所示:

import pandas as pd# 读excel文件
# 返回一个DataFrame对象,多维数据结构
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')
print(df)# 1.读取一列数据
# df["title"] 返回一个Series对象,记录title这列的数据
print(df["title"])# Series对象能转化为任何序列类型和dict字典类型
print(list(df['title']))    # 转化为列表
# title为DataFrame对象的属性
print(list(df.title))    # 转化为列表
print(tuple(df['title']))   # 转化为元组
print(dict(df['title']))    # 转化为字典,key为数字索引# 2.读取某一个单元格数据
# 不包括表头,指定列名和行索引
print(df['title'][0])   # title列,不包括表头的第一个单元格# 3.读取多列数据
print(df[["title", "actual"]])

3.按行读取数据

import pandas as pd# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)# 1.读取一行数据
# 不包括表头,第一个索引值为0
# 获取第一行数据,可以将其转化为list、tuple、dict
print(list(df.iloc[0]))  # 转成列表
print(tuple(df.iloc[0]))  # 转成元组
print(dict(df.iloc[0]))  # 转成字典
print(dict(df.iloc[-1]))  # 也支持负索引# 2.读取某一个单元格数据
# 不包括表头,指定行索引和列索引(或者列名)
print(df.iloc[0]["l_data"])   # 指定行索引和列名
print(df.iloc[0][2])    # 指定行索引和列索引# 3.读取多行数据
print(df.iloc[0:3])

4.iloc和loc方法

import pandas as pd# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)# 1.iloc方法
# iloc使用数字索引来读取行和列
# 也可以使用iloc方法读取某一列
print(df.iloc[:, 0])
print(df.iloc[:, 1])
print(df.iloc[:, -1])# 读取多列
print(df.iloc[:, 0:3])# 读取多行多列
print(df.iloc[2:4, 1:4])
print(df.iloc[[1, 3], [2, 4]])# 2.loc方法
# loc方法,基于标签名或者索引名来选择
print(df.loc[1:2, "title"])  			# 多行一列
print(df.loc[1:2, "title":"r_data"])    # 多列多行# 基于布尔类型来选择
print(df["r_data"] > 5)  # 某一列中大于5的数值为True,否则为False
print(df.loc[df["r_data"] > 5])  # 把r_data列中大于5,所在的行选择出来
print(df.loc[df["r_data"] > 5, "r_data":"actual"])  # 把r_data到actual列选择出来

5.读取所有数据

import pandas as pd# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)# 读取的数据为嵌套列表的列表类型,此方法不推荐使用
print(df.values)# 嵌套字典的列表
datas_list = []
for r_index in df.index:datas_list.append(df.iloc[r_index].to_dict())print(datas_list)

6.写入数据

import pandas as pd# 读excel文件
df = pd.read_excel('lemon_cases.xlsx', sheet_name='multiply')   # 返回一个DataFrame对象,多维数据结构
print(df)df['result'][0] = 1000
print(df)
with pd.ExcelWriter('lemon_cases_new.xlsx') as writer:df.to_excel(writer, sheet_name="New", index=False)

三、使用pandas来操作csv文件

1.读取csv文件

案例中的data.log文件内容如下所示:

TestID,TestTime,Success
0,149,0
1,69,0
2,45,0
3,18,1
4,18,1
import pandas as pd# 读取csv文件
# 方法一,使用read_csv读取,列与列之间默认以逗号分隔(推荐方法)
# a.第一行为列名信息
csvframe = pd.read_csv('data.log')# b.第一行没有列名信息,直接为数据
csvframe = pd.read_csv('data.log', header=None)# c.第一行没有列名信息,直接为数据,也可以指定列名
csvframe = pd.read_csv('data.log', header=None, names=["Col1", "Col2", "Col3"])# 方法二,read_table,需要指定列与列之间分隔符为逗号
csvframe = pd.read_table('data.log', sep=",")

2.解答面试题

import pandas as pd# 1.读取csv文件
csvframe = pd.read_csv('data.log')# 2.选择Success为0的行
new_csvframe = csvframe.loc[csvframe["Success"] == 0]
result_csvframe = new_csvframe["TestTime"]
avg_result = round(sum(result_csvframe)/len(result_csvframe), 2)
print("TestTime最小值为:{}\nTestTime最大值为:{}\nTestTime平均值为:{}".format(min(result_csvframe), max(result_csvframe), avg_result))

四、总结

  • 在数据分析、数据可视化领域,Pandas的应用极其广泛;在大规模数据、多种类数据处理上效率非常高
  • 在软件测试领域也有应用,但如果仅仅用excel来存放测试数据,使用Pandas就有点“杀鸡焉用宰牛刀”的感觉,那么建议使用特定的模块来处理(比如openpyxl

写在最后

如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!

看到这篇文章的人有觉得我的理解有误的地方,也欢迎评论和探讨~

你也可以加入下方的的群聊去和同行大神交流切磋

 

 

http://www.yayakq.cn/news/864600/

相关文章:

  • 东莞网站建设部落wordpress rss feed
  • 网站建设费需要列入无形资产吗加工厂网站建设论文
  • 宠物网站设计的代码重庆哪里可以做网站
  • 微网站 价格wordpress文章中写代码
  • 安徽水利建设市场信用信息平台网站阿里巴巴 网站设计
  • 天河岗顶棠下上社网站建设公司合肥建设网站哪个好
  • 济南建网站价格app软件制作网站
  • 廊坊网站建设选择青橙网络做房产网站需要了解什么东西
  • 类似凡科网的网站wordpress 注册 用户名
  • 网站排名不可有利就前怎么注册自己网站吗
  • 百度怎么收录网站装宽带一般多少钱
  • 网站建设公司哪家好智搜宝深圳企业网站建设哪家专业
  • 科技有限公司 网站制作牛商网网站源码
  • 阿里云虚拟主机与网站吗网站建设记录过程
  • 沙坪坝做网站中小企业公共服务平台
  • wordpress 搬家 子页面无法访问天津seo推广
  • 如何 申请个人网站wordpress 个人说明
  • 海原县建设局网站免费好用的网站制作
  • 网站建设大概要多少钱网上做网站赚钱吗
  • 网站外链建设工作总结网站主机的选择与优化
  • 扬州网站建设哪个好薇城乡与住房建设厅网站
  • 电子商务网站开发背景意义万网会员
  • 优客工场 网站开发网站开发的形式是
  • 365建设网站恒通建设集团有限公司网站
  • 杭州设计公司网站排名wordpress后台 插件
  • 优设网站wordpress改颜色
  • 精美网站设计欣赏seo优化工具软件
  • 带动画的网站模板美食网页模板免费下载
  • 网站特效代码html女装商城网站建设
  • 梅州网站开发区块链交易网站建设