当前位置: 首页 > news >正文

淄博论坛网站建设网站开发哪里有

淄博论坛网站建设,网站开发哪里有,最佳磁力搜索引擎,普通电脑如何做网站服务器吗CNN的原理 从 DNN 到 CNN (1)卷积层与汇聚 ⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚&#xff08…

CNN的原理

从 DNN 到 CNN
(1)卷积层与汇聚
⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚(Pooling)。
⚫ DNN 的全连接层对应 CNN 的卷积层,汇聚是与激活函数类似的附件;单个卷积层的结构是:卷积层-激活函数-(汇聚),其中汇聚可省略。
(2)CNN:专攻多维数据
在深度神经网络 DNN 课程的最后一章,使用 DNN 进行了手写数字的识别。但是,图像至少就有二维,向全连接层输入时,需要多维数据拉平为 1 维数据,这样一来,图像的形状就被忽视了,很多特征是隐藏在空间属性里的,而卷积层可以保持输入数据的维数不变,当输入数据是二维图像时,卷积层会以多维数据的形式接收输入数据,并同样以多维数据的形式输出至下一层

导包

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

制作数据集

# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)

训练网络

class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

测试网络

# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

使用网络

# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

运行截图

http://www.yayakq.cn/news/969773/

相关文章:

  • 网站开发实例pdf网站建设立项申请书
  • 网站建站视频教程东城区网站建设公司
  • 阜宁县住房和城乡建设局网站社交电商怎么做
  • 网站开发外文文献微信h5页面制作小程序
  • dw做网站怎么排版wordpress的分享插件
  • 外卖网站怎么做网站标题如何书写
  • 合肥网站建设哪家好价格网站建设 秦皇岛公司
  • dw php网站开发企业服务公司简介怎么写
  • 网站开发环境和运行环境响应式企业展示型网站模板
  • 销售网站开发与设计现状广东住房和城乡建设部网站
  • 做网站都能赚钱吗榆林网站建设哪家好
  • 抖音广告投放 网页制作教程大连seo外包公司
  • 代理网站哪个好重庆快速排名优化
  • 宁波网站建设多少钱南宁哪个公司做网站好
  • 厦门工程建设招聘信息网站做百度网站找谁
  • 建筑公司网站制作wordpress 信息港
  • 贵阳企业网站建设丽水市建设工程招标网站
  • 精美驾校企业网站模板网站建设公司的转型
  • 怎么做网站下单3d网站制作
  • 关于网站项目建设的申请安庆做网站哪个公司好
  • 微信网站可以免费做么设计师的个人网站
  • 服务之家网站推广公司长沙网站外包
  • 网站建设存在的问题及对策wordpress定时发布文章
  • 自适应影视网站模板软件公司招聘最新信息
  • 北京朝阳区做网站网页怎么制作
  • 网站发布文章怎么才能让百度收录住房和城乡建设管理局官网
  • 静态网站做新闻系统注册代理公司
  • 网站开发和手机开发哪个好新办公司网上核名在哪个网站做
  • 流量购买网站腾讯域名
  • 网站建设项目策划点金网站建设