当前位置: 首页 > news >正文

公司内部网站怎么制作铜仁搜狗推广

公司内部网站怎么制作,铜仁搜狗推广,东莞市土木建筑学会,网站集约建设原因之前用pytorch构建了squeezenet,个人觉得pytorch是最好用的,但是有的工程就是需要caffe结构的,所以本篇也用caffe构建一个squeezenet网络。 数据处理 首先要对数据进行处理,跟pytorch不同,pytorch读取数据只需要给数据…

之前用pytorch构建了squeezenet,个人觉得pytorch是最好用的,但是有的工程就是需要caffe结构的,所以本篇也用caffe构建一个squeezenet网络。

数据处理

首先要对数据进行处理,跟pytorch不同,pytorch读取数据只需要给数据集所在目录即可直接从中读取数据,而caffe需要一个包含每张图片的绝对路径以及所在类别的txt文件,从中读取数据。写一个生成次txt文件的脚本:

import os
import randomfolder = 'cotta'  # 数据集目录相对路径
names = os.listdir(folder)f1 = open('/train_txt/train_cotta.txt', 'a')  # 生成的txt地址
f2 = open('/train_txt/test_water_workcloth.txt', 'a')for name in names:imgnames = os.listdir(folder + '/' + name)random.shuffle(imgnames)numimg = len(imgnames)for i in range(numimg):f1.write('%s %s\n' % (folder + '/' + name + '/' + imgnames[i], name[0]))# if i < int(0.9*numimg):#     f1.write('%s %s\n'%(folder + '/' + name + '/' + imgnames[i], name[0]))# else:#     f2.write('%s %s\n'%(folder + '/' + name + '/' + imgnames[i], name[0]))
# f2.close()
f1.close()

数据集的目录也要跟pytorch的一致,一个类的数据放在一个目录中,目录名为类名。且脚本与该目录同级。
运行脚本后生成的txt内容如下:

/cotta/0_other/0_1_391_572_68_68.jpg 0
/cotta/1_longSleeves/9605_1_5_565_357_82_70.jpg 1
/cotta/2_cotta/713_0.99796_1_316_162_96_87.jpg 2
......
图片相对路径 图片所属类别

网络结构配置文件

trainval.prototxt

layer {name: "data"type: "ImageData"top: "data"top: "label"transform_param {mirror: truecrop_size: 96}image_data_param {source: "/train_txt/train_cotta.txt"   # 生成的txt的相对路径root_folder: "/data/"   # 存放数据集目录的路径batch_size: 64shuffle: truenew_height: 96new_width: 96}}
layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"convolution_param {num_output: 96kernel_size: 3stride: 1pad: 1weight_filler {type: "xavier"}}
}layer {  name: "BatchNorm1"  type: "BatchNorm" bottom: "conv1"  top: "BatchNorm1"   
}layer {name: "relu_conv1"type: "ReLU"bottom: "BatchNorm1"top: "BatchNorm1"
}
layer {name: "pool1"type: "Pooling"bottom: "BatchNorm1"top: "pool1"pooling_param {pool: MAXkernel_size: 2stride: 2}
}
layer {name: "fire2/squeeze1x1"type: "Convolution"bottom: "pool1"top: "fire2/squeeze1x1"convolution_param {num_output: 16kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire2/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire2/squeeze1x1"  top: "fire2/bn_squeeze1x1"   
}layer {name: "fire2/relu_squeeze1x1"type: "ReLU"bottom: "fire2/bn_squeeze1x1"top: "fire2/bn_squeeze1x1"
}
layer {name: "fire2/expand1x1"type: "Convolution"bottom: "fire2/bn_squeeze1x1"top: "fire2/expand1x1"convolution_param {num_output: 64kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire2/bn_expand1x1"  type: "BatchNorm" bottom: "fire2/expand1x1"  top: "fire2/bn_expand1x1"   
}layer {name: "fire2/relu_expand1x1"type: "ReLU"bottom: "fire2/bn_expand1x1"top: "fire2/bn_expand1x1"
}
layer {name: "fire2/expand3x3"type: "Convolution"bottom: "fire2/bn_expand1x1"top: "fire2/expand3x3"convolution_param {num_output: 64pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire2/bn_expand3x3"  type: "BatchNorm" bottom: "fire2/expand3x3"  top: "fire2/bn_expand3x3"   
}layer {name: "fire2/relu_expand3x3"type: "ReLU"bottom: "fire2/bn_expand3x3"top: "fire2/bn_expand3x3"
}
layer {name: "fire2/concat"type: "Concat"bottom: "fire2/bn_expand1x1"bottom: "fire2/bn_expand3x3"top: "fire2/concat"
}#fire2 ends: 128 channels
layer {name: "fire3/squeeze1x1"type: "Convolution"bottom: "fire2/concat"top: "fire3/squeeze1x1"convolution_param {num_output: 16kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire3/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire3/squeeze1x1"  top: "fire3/bn_squeeze1x1"   
}layer {name: "fire3/relu_squeeze1x1"type: "ReLU"bottom: "fire3/bn_squeeze1x1"top: "fire3/bn_squeeze1x1"
}
layer {name: "fire3/expand1x1"type: "Convolution"bottom: "fire3/bn_squeeze1x1"top: "fire3/expand1x1"convolution_param {num_output: 64kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire3/bn_expand1x1"  type: "BatchNorm" bottom: "fire3/expand1x1"  top: "fire3/bn_expand1x1"   
}layer {name: "fire3/relu_expand1x1"type: "ReLU"bottom: "fire3/bn_expand1x1"top: "fire3/bn_expand1x1"
}
layer {name: "fire3/expand3x3"type: "Convolution"bottom: "fire3/bn_expand1x1"top: "fire3/expand3x3"convolution_param {num_output: 64pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire3/bn_expand3x3"  type: "BatchNorm" bottom: "fire3/expand3x3"  top: "fire3/bn_expand3x3"   
}layer {name: "fire3/relu_expand3x3"type: "ReLU"bottom: "fire3/bn_expand3x3"top: "fire3/bn_expand3x3"
}
layer {name: "fire3/concat"type: "Concat"bottom: "fire3/bn_expand1x1"bottom: "fire3/bn_expand3x3"top: "fire3/concat"
}#fire3 ends: 128 channelslayer {name: "bypass_23"type: "Eltwise"bottom: "fire2/concat"bottom: "fire3/concat"top: "fire3_EltAdd"
}layer {name: "fire4/squeeze1x1"type: "Convolution"bottom: "fire3_EltAdd"top: "fire4/squeeze1x1"convolution_param {num_output: 32kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire4/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire4/squeeze1x1"  top: "fire4/bn_squeeze1x1"   
}layer {name: "fire4/relu_squeeze1x1"type: "ReLU"bottom: "fire4/bn_squeeze1x1"top: "fire4/bn_squeeze1x1"
}
layer {name: "fire4/expand1x1"type: "Convolution"bottom: "fire4/bn_squeeze1x1"top: "fire4/expand1x1"convolution_param {num_output: 128kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire4/bn_expand1x1"  type: "BatchNorm" bottom: "fire4/expand1x1"  top: "fire4/bn_expand1x1"   
}layer {name: "fire4/relu_expand1x1"type: "ReLU"bottom: "fire4/bn_expand1x1"top: "fire4/bn_expand1x1"
}
layer {name: "fire4/expand3x3"type: "Convolution"bottom: "fire4/bn_expand1x1"top: "fire4/expand3x3"convolution_param {num_output: 128pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire4/bn_expand3x3"  type: "BatchNorm" bottom: "fire4/expand3x3"  top: "fire4/bn_expand3x3"   
}layer {name: "fire4/relu_expand3x3"type: "ReLU"bottom: "fire4/bn_expand3x3"top: "fire4/bn_expand3x3"
}
layer {name: "fire4/concat"type: "Concat"bottom: "fire4/bn_expand1x1"bottom: "fire4/bn_expand3x3"top: "fire4/concat"
}
#fire4 ends: 256 channelslayer {name: "pool4"type: "Pooling"bottom: "fire4/concat"top: "pool4"pooling_param {pool: MAXkernel_size: 2stride: 2}
}
#fire4 ends: 256 channels / pooled
layer {name: "fire5/squeeze1x1"type: "Convolution"bottom: "pool4"top: "fire5/squeeze1x1"convolution_param {num_output: 32kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire5/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire5/squeeze1x1"  top: "fire5/bn_squeeze1x1"   
}layer {name: "fire5/relu_squeeze1x1"type: "ReLU"bottom: "fire5/bn_squeeze1x1"top: "fire5/bn_squeeze1x1"
}
layer {name: "fire5/expand1x1"type: "Convolution"bottom: "fire5/bn_squeeze1x1"top: "fire5/expand1x1"convolution_param {num_output: 128kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire5/bn_expand1x1"  type: "BatchNorm" bottom: "fire5/expand1x1"  top: "fire5/bn_expand1x1"   
}layer {name: "fire5/relu_expand1x1"type: "ReLU"bottom: "fire5/bn_expand1x1"top: "fire5/bn_expand1x1"
}
layer {name: "fire5/expand3x3"type: "Convolution"bottom: "fire5/bn_expand1x1"top: "fire5/expand3x3"convolution_param {num_output: 128pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire5/bn_expand3x3"  type: "BatchNorm" bottom: "fire5/expand3x3"  top: "fire5/bn_expand3x3"   
}layer {name: "fire5/relu_expand3x3"type: "ReLU"bottom: "fire5/bn_expand3x3"top: "fire5/bn_expand3x3"
}
layer {name: "fire5/concat"type: "Concat"bottom: "fire5/bn_expand1x1"bottom: "fire5/bn_expand3x3"top: "fire5/concat"
}#fire5 ends: 256 channels
layer {name: "bypass_45"type: "Eltwise"bottom: "pool4"bottom: "fire5/concat"top: "fire5_EltAdd"
}layer {name: "fire6/squeeze1x1"type: "Convolution"bottom: "fire5_EltAdd"top: "fire6/squeeze1x1"convolution_param {num_output: 48kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire6/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire6/squeeze1x1"  top: "fire6/bn_squeeze1x1"   
}layer {name: "fire6/relu_squeeze1x1"type: "ReLU"bottom: "fire6/bn_squeeze1x1"top: "fire6/bn_squeeze1x1"
}
layer {name: "fire6/expand1x1"type: "Convolution"bottom: "fire6/bn_squeeze1x1"top: "fire6/expand1x1"convolution_param {num_output: 192kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire6/bn_expand1x1"  type: "BatchNorm" bottom: "fire6/expand1x1"  top: "fire6/bn_expand1x1"   
}layer {name: "fire6/relu_expand1x1"type: "ReLU"bottom: "fire6/bn_expand1x1"top: "fire6/bn_expand1x1"
}
layer {name: "fire6/expand3x3"type: "Convolution"bottom: "fire6/bn_expand1x1"top: "fire6/expand3x3"convolution_param {num_output: 192pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire6/bn_expand3x3"  type: "BatchNorm" bottom: "fire6/expand3x3"  top: "fire6/bn_expand3x3"   
}layer {name: "fire6/relu_expand3x3"type: "ReLU"bottom: "fire6/bn_expand3x3"top: "fire6/bn_expand3x3"
}
layer {name: "fire6/concat"type: "Concat"bottom: "fire6/bn_expand1x1"bottom: "fire6/bn_expand3x3"top: "fire6/concat"
}
#fire6 ends: 384 channelslayer {name: "fire7/squeeze1x1"type: "Convolution"bottom: "fire6/concat"top: "fire7/squeeze1x1"convolution_param {num_output: 48kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire7/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire7/squeeze1x1"  top: "fire7/bn_squeeze1x1"   
}layer {name: "fire7/relu_squeeze1x1"type: "ReLU"bottom: "fire7/bn_squeeze1x1"top: "fire7/bn_squeeze1x1"
}
layer {name: "fire7/expand1x1"type: "Convolution"bottom: "fire7/bn_squeeze1x1"top: "fire7/expand1x1"convolution_param {num_output: 192kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire7/bn_expand1x1"  type: "BatchNorm" bottom: "fire7/expand1x1"  top: "fire7/bn_expand1x1"   
}layer {name: "fire7/relu_expand1x1"type: "ReLU"bottom: "fire7/bn_expand1x1"top: "fire7/bn_expand1x1"
}
layer {name: "fire7/expand3x3"type: "Convolution"bottom: "fire7/bn_expand1x1"top: "fire7/expand3x3"convolution_param {num_output: 192pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire7/bn_expand3x3"  type: "BatchNorm" bottom: "fire7/expand3x3"  top: "fire7/bn_expand3x3"   
}layer {name: "fire7/relu_expand3x3"type: "ReLU"bottom: "fire7/bn_expand3x3"top: "fire7/bn_expand3x3"
}
layer {name: "fire7/concat"type: "Concat"bottom: "fire7/bn_expand1x1"bottom: "fire7/bn_expand3x3"top: "fire7/concat"
}
#fire7 ends: 384 channels
layer {name: "bypass_67"type: "Eltwise"bottom: "fire6/concat"bottom: "fire7/concat"top: "fire7_EltAdd"
}layer {name: "fire8/squeeze1x1"type: "Convolution"bottom: "fire7_EltAdd"top: "fire8/squeeze1x1"convolution_param {num_output: 64kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire8/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire8/squeeze1x1"  top: "fire8/bn_squeeze1x1"   
}layer {name: "fire8/relu_squeeze1x1"type: "ReLU"bottom: "fire8/bn_squeeze1x1"top: "fire8/bn_squeeze1x1"
}
layer {name: "fire8/expand1x1"type: "Convolution"bottom: "fire8/bn_squeeze1x1"top: "fire8/expand1x1"convolution_param {num_output: 256kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire8/bn_expand1x1"  type: "BatchNorm" bottom: "fire8/expand1x1"  top: "fire8/bn_expand1x1"   
}layer {name: "fire8/relu_expand1x1"type: "ReLU"bottom: "fire8/bn_expand1x1"top: "fire8/bn_expand1x1"
}
layer {name: "fire8/expand3x3"type: "Convolution"bottom: "fire8/bn_expand1x1"top: "fire8/expand3x3"convolution_param {num_output: 256pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire8/bn_expand3x3"  type: "BatchNorm" bottom: "fire8/expand3x3"  top: "fire8/bn_expand3x3"   
}layer {name: "fire8/relu_expand3x3"type: "ReLU"bottom: "fire8/bn_expand3x3"top: "fire8/bn_expand3x3"
}
layer {name: "fire8/concat"type: "Concat"bottom: "fire8/bn_expand1x1"bottom: "fire8/bn_expand3x3"top: "fire8/concat"
}
#fire8 ends: 512 channelslayer {name: "pool8"type: "Pooling"bottom: "fire8/concat"top: "pool8"pooling_param {pool: MAXkernel_size: 2stride: 2}
}
#fire8 ends: 512 channels
layer {name: "fire9/squeeze1x1"type: "Convolution"bottom: "pool8"top: "fire9/squeeze1x1"convolution_param {num_output: 64kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire9/bn_squeeze1x1"  type: "BatchNorm" bottom: "fire9/squeeze1x1"  top: "fire9/bn_squeeze1x1"   
}layer {name: "fire9/relu_squeeze1x1"type: "ReLU"bottom: "fire9/bn_squeeze1x1"top: "fire9/bn_squeeze1x1"
}
layer {name: "fire9/expand1x1"type: "Convolution"bottom: "fire9/bn_squeeze1x1"top: "fire9/expand1x1"convolution_param {num_output: 256kernel_size: 1weight_filler {type: "xavier"}}
}layer {  name: "fire9/bn_expand1x1"  type: "BatchNorm" bottom: "fire9/expand1x1"  top: "fire9/bn_expand1x1"   
}layer {name: "fire9/relu_expand1x1"type: "ReLU"bottom: "fire9/bn_expand1x1"top: "fire9/bn_expand1x1"
}
layer {name: "fire9/expand3x3"type: "Convolution"bottom: "fire9/bn_expand1x1"top: "fire9/expand3x3"convolution_param {num_output: 256pad: 1kernel_size: 3weight_filler {type: "xavier"}}
}layer {  name: "fire9/bn_expand3x3"  type: "BatchNorm" bottom: "fire9/expand3x3"  top: "fire9/bn_expand3x3"   
}layer {name: "fire9/relu_expand3x3"type: "ReLU"bottom: "fire9/bn_expand3x3"top: "fire9/bn_expand3x3"
}
layer {name: "fire9/concat"type: "Concat"bottom: "fire9/bn_expand1x1"bottom: "fire9/bn_expand3x3"top: "fire9/concat"
}
#fire9 ends: 512 channelslayer {name: "conv10_new"type: "Convolution"bottom: "fire9/concat"top: "conv10"convolution_param {num_output: 3kernel_size: 1weight_filler {type: "gaussian"mean: 0.0std: 0.01}}
}layer {name: "pool10"type: "Pooling"bottom: "conv10"top: "pool10"pooling_param {pool: AVEglobal_pooling: true}
}# loss, top1, top5
layer {name: "loss"type: "SoftmaxWithLoss"bottom: "pool10"bottom: "label"top: "loss"include {
#    phase: TRAIN}
}
layer {name: "accuracy"type: "Accuracy"bottom: "pool10"bottom: "label"top: "accuracy"#include {#  phase: TEST#}
}

在最后一层卷积层conv10中的num_output修改类别数量。

模型超参配置文件

solver.prototxt

test_iter: 2000 #not subject to iter_size
test_interval: 1000000
# base_lr: 0.0001
base_lr: 0.005       # 学习率
display: 40
# max_iter: 600000
max_iter: 200000    # 迭代数
iter_size: 2 #global batch size = batch_size * iter_size
lr_policy: "poly"
power: 1.0 #linearly decrease LR
momentum: 0.9
weight_decay: 0.0002
snapshot: 10000     # 每多少次迭代保存一个模型
snapshot_prefix: "/data/zxc/classfication/model/model_cotta/cotta_"   # 模型保存路径
solver_mode: GPU
random_seed: 42
net: "./trainNets_drive/trainval.prototxt"   # 网络结构配置文件的路径 
test_initialization: false
average_loss: 40
  • max_iter:caffe用的是迭代数而不是pytorch的轮数。pytorch中训练完全部的训练集为一轮,而caffe中训练完一个batch_size的数据为一个迭代。如果想要等价与轮数的话,一轮就等于:len(train_data) / batch_size。如果有余数就要看pytorch里的dataloader里面设置舍去还是为一个batch,如果舍去就是向下取整,如果不舍去就是向上取整;
  • snapshot_prefix:最后一部分为每个保存模型的前缀,如图:
    在这里插入图片描述

运行命令

将运行命令写入bash文件中:
train.sh

/home/seg/anaconda3/envs/zxc/bin/caffe train -gpu 1 -solver ./solvers/solver_3.prototxt -weights=/data/classfication/model/model_cotta/cotta__iter_200000.caffemodel 2>&1 | tee log_3_4_class.txt 
  • -gpu:选择哪块卡,如果就一块就是0;
  • -solver:后面跟网络超参配置文件路径;
  • -weights:后面跟预训练模型,可以用官方给的squeezenet的caffe版本的预训练模型,我这里是训练中断从断点继续训练

编写完成后source activate 环境名称进入source环境,然后source train.sh运行bash文件就能开始训练。

http://www.yayakq.cn/news/115911/

相关文章:

  • 津南做网站的公司有没有帮忙做问卷调查的网站
  • 一个网站备案号是冒用其它公司的孔为民医生个人网站
  • 福建省建设执业资格注册管理中心网站dw做个人简历网页怎么做
  • 网站服务器 英文html编写软件
  • 优化设计答案大全包头seo
  • 二级网站怎样做订单拆单在电商网站建设
  • 网站设计与wap网站开发技术申请网站空间
  • 用flex做的网站h5页面设计是什么
  • 淮海中路街道网站建设关于网站建设公司大全
  • 网站首页模板图片如何在wordpress添加h1标签
  • 网站开发合作720云和wordpress
  • 四川网站建设培训学校企业网站建设的基本原则
  • 建筑工程网上保健网站做一个电商网站需要多少钱
  • 电商网站改版温州网站网络公司
  • 网站底部版权信息代码wordpress 虾米音乐插件
  • 建设物流网站的规划东莞洪梅网站建设
  • 桂林有哪些做网站的电话厦门做英文网站
  • 新手怎么学习网站建设wordpress列表页显示tag
  • 建站行业发展terrytao wordpress
  • 淮南网站优化电子商务网站建设需要什么
  • 网站建设安全性原则上海2023年建管平台放假时间
  • 椒江做国际网站的公司wordpress页面的设置
  • 网站营销最大的特点湖北网站建设联系电话
  • seo网站快排o2o平台名称有哪些
  • 如何设置网站名字视频号分销解决方案的特点
  • 临桂城乡建设局网站专业手机网站制作哪家好
  • 织梦后台点击网站主页申请注册公司需要什么资料
  • 轮播网站做同城购物网站赚钱吗
  • mstsc做网站农业网站建设招标书
  • 没有公司 接单做网站wordpress显示作者信息