当前位置: 首页 > news >正文

东营兴通建设工程公司网站网页制作文字素材

东营兴通建设工程公司网站,网页制作文字素材,特种作业人员成绩查询,个人搭建网站教程数据: 训练过程图 算法简介: UNet网络是分割任务中的一个经典模型,因其整体形状与"U"相似而得名,"U"形结构有助于捕获多尺度信息,并促进了特征的精确重建,该网络整体由编码器,解码器以及跳跃连接三部分组成。 编码器由…

数据:
在这里插入图片描述
在这里插入图片描述
训练过程图
在这里插入图片描述
算法简介:
UNet网络是分割任务中的一个经典模型,因其整体形状与"U"相似而得名,"U"形结构有助于捕获多尺度信息,并促进了特征的精确重建,该网络整体由编码器,解码器以及跳跃连接三部分组成。
编码器由一系列卷积层(Convenlution)和池化层(Polling) 组成,用于逐步降低输入图像的空间尺寸和通道数,同时提取图像的高层特征信息:
解码器由一系列上采样层和卷积层组成,用于逐步还原特征图的空间尺寸和通道细节信息。
在编码器和解码器通过跳跃连接将编码器的某一层的特征图与对应的解码器层的特征图连接起来。正是因为"U"结构的有效性,UNet网络被许多学者沿用至今。
UNet网络的基本块由两个卷积和ReLu激活函数构成,使用3x3的卷积核尺寸来捕捉上下文信息。网络的左侧部分构成UNet的编码器,负责从输入影像中提取特征信息。
在UNet的解码阶段,解码基本块与编码阶段的基本块是一一对应的。从瓶颈层出发,通过上采样将特征图放大,然后经过解码基本块进行特征信息的解码重建。
此外跳跃连接(copyandcrop)的设计允许将编码阶段提取的特征信息传递到解码基本块中,有助于进一步恢复细节信息。整个过程重复进行四次,完成对病灶区域的分割。
在这里插入图片描述

运行视频:

【MATLAB实战】基于UNet的肺结节的检测

代码:

function expName = unet(expName, size, encoderDepth, filters, batchsize, epochs, useDataAugmentation, L2Reg, lr, ...gradientclipping, path, splits, folders, savePredictionsFolder, classNames, labelIDs, valPat, isMAT )% 创建unet 网络
numClasses  = length(classNames);
lgraph = unetLayers(size,numClasses,'EncoderDepth',encoderDepth, 'NumFirstEncoderFilters', filters)%%     TRAIN       %%
% 加载训练集
if isMAT == trueimdsTrain = imageDatastore(strcat(path, '/', splits(1), '/', folders(1)), 'FileExtensions','.mat', 'ReadFcn', @loadMAT);
elseimdsTrain = imageDatastore(strcat(path, '/', splits(1), '/', folders(1)));
endpxdsTrain = pixelLabelDatastore(strcat(path, '/', splits(1), '/', folders(2)),classNames,labelIDs);tbl = countEachLabel(pxdsTrain)imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;medFreqClassWeights = median(imageFreq) ./ imageFreqlayer_to_add = [pixelClassificationLayer('Classes',classNames,'ClassWeights',medFreqClassWeights,'Name','Segmentation-Layer')];
% 替换层
lgraph = replaceLayer(lgraph,'Segmentation-Layer',layer_to_add);
Display the network.
analyzeNetwork(lgraph)% 创建 datastore 
if useDataAugmentation == false % 不适用图像增强
%     testpxds = pixelLabelDatastore(testlabelDir,classNames,labelIDs);ds = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
else % 图像增强augmenter = imageDataAugmenter('RandXReflection',true, 'RandYReflection',true)%,'RandRotation',[-10 10], 'RandXTranslation', [-5 5], 'RandYTranslation', [-5 5]);  ds = pixelLabelImageDatastore(imdsTrain,pxdsTrain, 'DataAugmentation', augmenter);
end % 加载验证集.
if isMAT==trueimdsVal = imageDatastore(strcat(path, '/', splits(3), '/', folders(1)), 'FileExtensions','.mat', 'ReadFcn', @loadMAT);
elseimdsVal = imageDatastore(strcat(path, '/', splits(3), '/', folders(1)));
end
pxdsVal = pixelLabelDatastore(strcat(path, '/', splits(3), '/', folders(2)),classNames,labelIDs);  
valData = pixelLabelImageDatastore(imdsVal, pxdsVal); 
valFreq = floor(length(ds.Images)/batchsize)% 设置 OPTIONS
options = trainingOptions(...'adam', ...    ... 'rmsprop' ... 'sgdm','Momentum', 0.9, ...'InitialLearnRate',lr, ...... 'LearnRateSchedule','piecewise', ...... 'LearnRateDropFactor', dropfactor, ...... 'LearnRateDropPeriod', 1, ...'MaxEpochs',epochs, ...'VerboseFrequency',10, ...'MiniBatchSize' , batchsize, ...'Plots','training-progress', ...'L2Regularization',L2Reg, ...,'ValidationData',valData, ...,'ValidationFrequency', valFreq,...,'ValidationPatience', valPat,...,... 'GradientThresholdMethod','l2norm',...... 'GradientThreshold',gradientclipping, ...'Shuffle','every-epoch', ...'ExecutionEnvironment', 'gpu');% 训练网络
tic;
[net,info] = trainNetwork(ds,lgraph,options)
traintime=toc;
save net.mat net;
%%         TEST       %%
% 加载测试集
if isMAT==trueimdsTest = imageDatastore(strcat(path, '/', splits(2), '/', folders(1)), 'FileExtensions','.mat', 'ReadFcn', @loadMAT);
elseimdsTest = imageDatastore(strcat(path, '/', splits(2), '/', folders(1)));
end
pxdsTest = pixelLabelDatastore(strcat(path, '/', splits(2), '/', folders(2)),classNames,labelIDs);% 在测试映像上运行网络。预测标签作为pixelLabelDatastore返回。
tic
pxdsResults = semanticseg(imdsTest,net, 'MiniBatchSize',batchsize,"WriteLocation", savePredictionsFolder);
toc% 计算混淆矩阵和分割度量(根据实际情况评估预测结果)
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest)
metrics.ClassMetrics
metrics.NormalizedConfusionMatrix
metrics.ConfusionMatrix
metrics.DataSetMetrics
% 设置保存目录mkdir(['ExpUNet/',expName]);
% logs 保存
save(['ExpUNet/',expName, '/results'])
% 保存评价指标
writetable(metrics.DataSetMetrics,['ExpUNet/',expName,'/dataset.csv'])
writetable(metrics.ClassMetrics, ['ExpUNet/',expName,'/classmetrics.csv'])
writetable(metrics.ConfusionMatrix, ['ExpUNet/',expName,'/confusionmatrix.csv'])
writetable(metrics.NormalizedConfusionMatrix, ['ExpUNet/',expName,'/normconfusionmatrix.csv'])
% 测试 6 张图像 结果保存
saveTestImages(net, imdsTest, pxdsTest,classNames, ['ExpUNet/',expName,'/ejemplos.png'], labelIDs, isMAT)endfunction final_matrix = loadMAT(filename)load(filename)
end

代码链接:https://download.csdn.net/download/qq_45047246/89565243

http://www.yayakq.cn/news/185316/

相关文章:

  • wordpress vr网站大丰哪家专业做网站
  • 泰安钢管网站建设wordpress 长文章分页
  • 网站热区图企业邮箱开通
  • 设计师网站国外自动生成作文网站
  • 注册外国网站最新体育新闻足球
  • 室内装修公司名字大全如何选择百度网站优化公司
  • 公司网站自己怎么建立ui设计案例网站
  • 宿州市埇桥建设规划局网站机械设备asp企业网站源码下载
  • 北京模板网站建设php网站开发就业前景
  • 网页qq登录记录网站朔州网站设计公司
  • 哈尔滨企业建站模板电商网站建设哪好
  • 如何建设网站安全管理制度做网站推广要注意什么
  • 网站建设与维护设计报告WordPress搭建流媒体网站
  • 深圳网站建设网站推广方案湖北省建设厅官方网站文件
  • 福州交通建设集团官方网站wordpress 博客 安装
  • 郑州做网站价格软件技术的发展前景
  • 如何将网站建设得更好南京旅游网站建设公司
  • 魔方建站孝感网站建设xgsh
  • 做网站能拿多少钱个人养老金制度有望年内
  • 榆社网站建设深圳家居网站建设公司
  • 沧浪手机网站建设公司乐清柳市广电网站
  • 绍兴seo网站推广互动平台网站
  • 专业网站设计服务在线咨询免费落地页制作平台
  • 网站做影集安全吗就业信息网页设计论文
  • 阿里巴巴网站的建设内容北京房山网站建设产品更新培训
  • 什么网站比较容易做福州城乡建设发展总公司官方网站
  • 关于网站建设的论坛wordpress仿微信播放器
  • 旅游网站建设技术有哪些内容企业网站建设费用 珠海
  • 青岛队建网站外贸公司都在用什么国际平台
  • 好兄弟给个网站wordpress子页面打不开