当前位置: 首页 > news >正文

网站建设和成本菏泽建筑模板厂家

网站建设和成本,菏泽建筑模板厂家,房产网租房,网站建设模板登录界面题目列表 2855. 使数组成为递增数组的最少右移次数 2856. 删除数对后的最小数组长度 2857. 统计距离为 k 的点对 2858. 可以到达每一个节点的最少边反转次数 一、使数组成为递增数组的最少右移次数 这题可以直接暴力求解,枚举出每种右移后的数组,将…

题目列表

2855. 使数组成为递增数组的最少右移次数

2856. 删除数对后的最小数组长度

2857. 统计距离为 k 的点对

2858. 可以到达每一个节点的最少边反转次数

一、使数组成为递增数组的最少右移次数

这题可以直接暴力求解,枚举出每种右移后的数组,将它和排完序后的数组比较,时间复杂度为O(n^2)

代码如下

class Solution {
public:int minimumRightShifts(vector<int>& nums) {vector<int> v=nums;sort(v.begin(),v.end());for(int i=0;i<nums.size();i++){if(v==nums) return i;nums.insert(nums.begin(),nums.back());nums.pop_back();}return -1;}
};

这个能过,但是有没有更快的算法,我们观察一下这个数组,如果它要是能右移成递增数组,那么它必然是由两个递增数组构成的,且前一个数组的最小值,一定大于后一个数组的最大值,答案就是第二个数组的长度,所以我们只要试着将数组拆分成两个递增数组就行(边界条件挺多,一定要细节),时间复杂度为O(n)

代码如下

class Solution {
public:int minimumRightShifts(vector<int>& nums) {int end1=0,n=nums.size();while(end1+1<n&&nums[end1]<nums[end1+1])end1++;if(end1==n-1) return 0;int end2=end1+1;while(end2+1<n&&nums[end2]<nums[end2+1])end2++;if(end2!=n-1||nums[0]<nums[n-1]) return -1;else return n-end1-1;}
};

二、删除数对后的最小数组长度

这题还是比较难想到的,比较绕。我们需要多枚举几个例子,然后就会发现,当某个数的个数cnt大于等于数组长度n的一半时,最优的方案就是将它前后的数都与它相互抵消(因为如果还让其他数相互抵消,那么剩余的和该数相抵消的元素个数就会变小,从而该元素剩下的个数就会变多),所以答案就是cnt-(n-cnt)=2*cnt-n,那么如果没有一个数的个数大于数组长度的一半呢?

首先从最特殊的数组中数字都是唯一的情况开始讨论,那么显然,当数组长度为偶数时,答案为0,当数组长度为奇数时,答案为1,那么是不是所有的情况都符合这个规律呢?答案是,确实都符合这个规律,因为所有的数的个数都<n/2,那么我们就可以通过抵消,将数的个数全部化成1

代码如下

class Solution {
public:int minLengthAfterRemovals(vector<int>& nums) {unordered_map<int,int>cnt;int n=nums.size(),ans=n&1;//n&1,奇数为1,偶数为0for(auto x:nums)++cnt[x];for(auto [x,y]:cnt)if(y>n/2)ans=max(ans,2*y-n);return ans;}
};

当然这题如果想不到这么深,那么也可以用最基本的贪心,每次拿出出现次数最大的两个元素相抵消,直到剩下零个数或剩下一个数为止。代码如下

class Solution {
public:int minLengthAfterRemovals(vector<int>& nums) {unordered_map<int,int>cnt;int n=nums.size(),ans=n&1;for(auto x:nums)++cnt[x];priority_queue<int>q;for(auto [x,y]:cnt)q.push(y);while(q.size()>1){int x=q.top();q.pop();int y=q.top();q.pop();x--,y--;if(x)q.push(x);if(y)q.push(y);}return q.empty()?0:q.top();}
};

三、统计距离为k的点对

看到两个数的和k,以及k的数据范围,我们就要想到这题能用暴力枚举点来做,然后通过枚举到的点,求出与之相对应的点的坐标,答案加上之前出现的该点个数(用哈希表统计),代码如下

class Solution {
public:int countPairs(vector<vector<int>>& coordinates, int k) {int n=coordinates.size();unordered_map<long long,int>cnt;int ans=0;for(auto& e:coordinates){int x=e[0],y=e[1];for(int i=0;i<=k;i++){auto it=cnt.find((x^i)*1000000LL+(y^(k-i)));if(it!=cnt.end())ans+=it->second;}cnt[x*1000000LL+y]++;}return ans;}
};

 四、可以到达每一个节点的最小边反转次数

这题是换根dp,即通过根节点的最小边反转次数,来得到它孩子结点的最小边反转次数,因为它的孩子结点的反转边的个数就和它父节点的最小边反转次数相差一个它俩之间的边是否需要翻转,其它的都一样。

代码如下

class Solution {
public:vector<int> minEdgeReversals(int n, vector<vector<int>>& edges) {//建图vector<vector<pair<int,int>>>g(n);for(auto& e:edges){int x=e[0],y=e[1];g[x].push_back({y,1});//顺便记录一下边的方向,1为正,-1为逆g[y].push_back({x,-1});}vector<int>ans(n);//计算根节点的最少边反转次数function<void(int,int)>dfs=[&](int x,int fa){for(auto& [y,dir]:g[x]){if(y!=fa){ans[0]+=(dir<0);//方向反的需要反转dfs(y,x);}}};dfs(0,-1);//换根dpfunction<void(int,int)>reroot=[&](int x,int fa){for(auto& [y,dir]:g[x]){if(y!=fa){ans[y]=ans[x]+dir;reroot(y,x);}}};reroot(0,-1);return ans;}
};

http://www.yayakq.cn/news/855969/

相关文章:

  • 做网站多大上行速度获取当前分类的父级wordpress
  • 做APP必须要有网站么做网站图片多大
  • 苏州建设培训中心网站海口建设公司网站
  • python版 wordpress南阳网站优化排名
  • 阿里巴巴企业网站注册企业营销策划心得体会
  • 如何部署thinkphp网站个人主页网站html
  • 怎么做监控直播网站网站备案备注怎么写
  • 网站等级保护必须做吗网站后台上传文章怎么做
  • 专业广州做网站公司新吴区推荐做网站电话
  • 网站制作理念php网站开发心得
  • 网站套餐到期是什么意思电商网站开发 上海
  • 保定建设招聘信息网站商业设计方案
  • wordpress站群源码个人网站可以做论坛
  • 门户网网站建设功能需求表网站快速排名优化哪家好
  • 中山中小企业网站建设网推所什么意思
  • 安徽建设干部学校网站投资管理公司
  • 企业网站搜索引擎推广方法包括wordpress写文章如何添加锚文本
  • 用织梦系统做网站产权如何查看一个网站的访问量
  • 软件工程做项目网站手机官方网站
  • flash是怎么做网站的wordpress菜单美化
  • 手机网站幻灯片代码手机端网站自动弹出营销qq
  • 文档里链接网站地址怎么做wordpress gettheauthormeta
  • 微网站 杭州深圳网站建设企业
  • 网易企业邮箱免费版网站运营seo招聘
  • 怎么做网站广告位ui设计的工作流程
  • 沙井做网站的公司广告设计毕业设计
  • 邯郸网站设计有哪些微信小程序开发公司排名
  • 房产中介做租单用哪个付费网站更好上海网站制作开发公司
  • 帝国网站开发删除wordpress缓存文件在哪
  • 建设银行u盾不能弹出银行网站网站二级菜单模板