当前位置: 首页 > news >正文

51的网站是啥手机上安装wordpress

51的网站是啥,手机上安装wordpress,黄山网络推广公司,做游戏的软件支持向量机的基本概念和数学公式: 1. 线性可分的支持向量机 对于线性可分的数据集 ,其中(x_i \in R^d) 是特征向量 是类别标签,目标是找到一个超平面 ,使得对于所有 的样本 ,对于所有(y_i -1) 的样本,…

支持向量机的基本概念和数学公式:

1. 线性可分的支持向量机

对于线性可分的数据集在这里插入图片描述
,其中(x_i \in R^d) 是特征向量在这里插入图片描述
是类别标签,目标是找到一个超平面
在这里插入图片描述
,使得对于所有在这里插入图片描述
的样本
在这里插入图片描述
,对于所有(y_i = -1) 的样本,(w^T x_i + b \leq -1)。

间隔(M)定义为:在这里插入图片描述

目标是最大化间隔,即最小化(\frac{1}{2}|w|^2),同时满足![在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 对偶问题

通过引入拉格朗日乘子(\alpha_i\geq 0),原问题的拉格朗日函数为:
在这里插入图片描述

对偶问题通过对(L)求(w)和(b)的偏导数并令其为(0)得到:
在这里插入图片描述
在这里插入图片描述

对偶问题是最大化
在这里插入图片描述
约束条件为在这里插入图片描述

3. 核函数

核函数在这里插入图片描述
,将数据映射到高维空间。常见的核函数有:

  • 线性核:

  • 在这里插入图片描述

  • 多项式核:在这里插入图片描述

  • 径向基函数(RBF)核:在这里插入图片描述

4. 软间隔与正则化

引入松弛变量(\xi_i\geq 0),目标函数变为:

在这里插入图片描述
约束条件为

在这里插入图片描述
在这里插入图片描述

5. 支持向量回归(SVR)

对于回归问题,引入(\epsilon)-不敏感损失函数,目标是找到(w) 和(b) 使得:
在这里插入图片描述

约束条件为
在这里插入图片描述
在这里插入图片描述

代码示例(使用 Python 和 scikit-learn 库):

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC, SVR
from sklearn.metrics import accuracy_score, mean_squared_error
import numpy as np# 生成示例数据集
X, y = datasets.make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=42)
y[y == 0] = -1  # 将类别标签转换为 -1 和 1# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 线性 SVM 分类器
svm_classifier = SVC(kernel='linear', C=1.0)
svm_classifier.fit(X_train, y_train)
y_pred = svm_classifier.predict(X_test)
print("线性 SVM 分类准确率:", accuracy_score(y_test, y_pred))# 多项式核 SVM 分类器
svm_poly_classifier = SVC(kernel='poly', degree=3, C=1.0)
svm_poly_classifier.fit(X_train, y_train)
y_pred_poly = svm_poly_classifier.predict(X_test)
print("多项式核 SVM 分类准确率:", accuracy_score(y_test, y_pred_poly))# RBF 核 SVM 分类器
svm_rbf_classifier = SVC(kernel='rbf', gamma=0.7, C=1.0)
svm_rbf_classifier.fit(X_train, y_train)
y_pred_rbf = svm_rbf_classifier.predict(X_test)
print("RBF 核 SVM 分类准确率:", accuracy_score(y_test, y_pred_rbf))# 生成回归数据集
X_reg, y_reg = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(X_reg, y_reg, test_size=0.3, random_state=42)# 支持向量回归
svr = SVR(kernel='rbf', C=1.0, epsilon=0.2)
svr.fit(X_train_reg, y_train_reg)
y_pred_reg = svr.predict(X_test_reg)
print("SVR 均方误差:", mean_squared_error(y_test_reg, y_pred_reg))

在这里插入图片描述

代码解释:

datasets.make_classification:生成分类数据集。

  • train_test_split:将数据集划分为训练集和测试集。
  • SVC:支持向量分类器,可指定不同的核函数(linearpolyrbf 等)和正则化参数 C
  • accuracy_score:计算分类准确率。
  • datasets.make_regression:生成回归数据集。
  • SVR:支持向量回归,可指定核函数、正则化参数 C 和(\epsilon) 参数。
  • mean_squared_error:计算均方误差。

手动实现 SVM 分类器(简化版):

import numpy as npdef linear_kernel(x1, x2):return np.dot(x1, x2)def train_svm(X, y, C=1.0, max_iter=1000, tol=1e-3, kernel=linear_kernel):n_samples, n_features = X.shapealpha = np.zeros(n_samples)b = 0eta = 0L = 0H = 0for iteration in range(max_iter):num_changed_alphas = 0for i in range(n_samples):Ei = np.sum(alpha * y * kernel(X, X[i])) + b - y[i]if (y[i] * Ei < -tol and alpha[i] < C) or (y[i] * Ei > tol and alpha[i] > 0):j = np.random.choice([k for k in range(n_samples) if k!= i])Ej = np.sum(alpha * y * kernel(X, X[j])) + b - y[j]alpha_i_old = alpha[i]alpha_j_old = alpha[j]if y[i] == y[j]:L = max(0, alpha[j] + alpha[i] - C)H = min(C, alpha[j] + alpha[i])else:L = max(0, alpha[j] - alpha[i])H = min(C, C + alpha[j] - alpha[i])if L == H:continueeta = 2 * kernel(X[i], X[j]) - kernel(X[i], X[i]) - kernel(X[j], X[j])if eta >= 0:continuealpha[j] -= y[j] * (Ei - Ej) / etaalpha[j] = np.clip(alpha[j], L, H)if abs(alpha[j] - alpha_j_old) < tol:continuealpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j])b1 = b - Ei - y[i] * (alpha[i] - alpha_i_old) * kernel(X[i], X[i]) - y[j] * (alpha[j] - alpha_j_old) * kernel(X[i], X[j])b2 = b - Ej - y[i] * (alpha[i] - alpha_i_old) * kernel(X[i], X[j]) - y[j] * (alpha[j] - alpha_j_old) * kernel(X[j], X[j])if 0 < alpha[i] < C:b = b1elif 0 < alpha[j] < C:b = b2else:b = (b1 + b2) / 2num_changed_alphas += 1if num_changed_alphas == 0:breakreturn alpha, bdef predict_svm(X, alpha, b, X_train, y_train, kernel=linear_kernel):n_samples = X.shape[0]y_pred = []for i in range(n_samples):pred = np.sum(alpha * y_train * kernel(X_train, X[i])) + by_pred.append(np.sign(pred))return np.array(y_pred)# 示例使用
X = np.array([[1, 2], [2, 3], [3, 4], [6, 7], [7, 8], [8, 9]])
y = np.array([1, 1, 1, -1, -1, -1])
alpha, b = train_svm(X, y, C=1.0)
y_pred = predict_svm(X, alpha, b, X, y)
print("手动实现 SVM 预测结果:", y_pred)

在这里插入图片描述

代码解释:

linear_kernel:定义线性核函数。

  • train_svm:使用 SMO(Sequential Minimal Optimization)算法训练 SVM,更新拉格朗日乘子(\alpha) 和偏置(b)。
  • predict_svm:使用训练好的(\alpha) 和(b) 进行预测。

在这里插入图片描述

http://www.yayakq.cn/news/352609/

相关文章:

  • 网站设计有限公司wordpress集成
  • 网站源码建站教程推广网站赚钱
  • 福州++网站建设制作购物网站教程
  • .net做网站的优缺点北京工程建设交易信息网官网
  • 深圳永久免费网站建设哪个好金坛网站开发
  • 小说网站开发业务逻辑青岛网站建设代理加盟
  • 网站建设案例图片教育平台网站建设
  • 诸暨市住房和城乡建设局网站对外网站ipv6建设方案模板
  • 重庆工信部网站外贸累网站
  • php是网站开发的语言吗职业教育网站开发
  • 广告设计宣传画册长春网站seo报价
  • 小内存 wordpress 优化苏州seo优化
  • ps做网页怎么在网站上打开广东网页设计师的公司排名
  • 电子商务网站建设的心得网页设计宣传推广方案
  • 18款禁用软件app网站入口健身网站设计模板下载
  • 开江建设局网站dedecms 旅游网站模板
  • 浅谈电子商务网站的建设与管理陕西有色建设有限公司网站
  • 如何销售网站开发深圳银行网站建设
  • 校网站建设方案怎么给网站做友情链接
  • 网站如何做浮窗网络公司规章制度范本
  • 发布个人免费网站的一般流程图如何为自己公司做网站
  • 怎么把代码添加网站微信公众平台开发技术
  • 哪些网站是可以做网络推广的网站建设实习任务完成情况
  • 免费创建个人网站申请宁波网站建设内容
  • app与手机网站的区别使用他人注册商标做网站
  • 网站 形象入口页广州:推动优化防控措施落
  • 强的网站建设公司排名婴儿网站建设住栏目
  • 5g云网站建设郑州网站建设七彩科技
  • 上线了 网站app制作与推广
  • 软件培训教程廊坊seo技巧