当前位置: 首页 > news >正文

怎么建立网站推广佛山seo教程

怎么建立网站推广,佛山seo教程,wordpress 代码框插件,如何做1个手机网站本篇内容摘自CMU 16-745最优控制的第10讲 “Nonlinear Trajectory Optimization”。 如何在不涉及张量运算的前提下,计算矩阵对向量的导数并写出二阶泰勒展开 在多维微积分中,计算矩阵对向量的导数和二阶泰勒展开是一项重要的任务。本文将介绍如何在不涉…

本篇内容摘自CMU 16-745最优控制的第10讲 “Nonlinear Trajectory Optimization”。

如何在不涉及张量运算的前提下,计算矩阵对向量的导数并写出二阶泰勒展开

在多维微积分中,计算矩阵对向量的导数和二阶泰勒展开是一项重要的任务。本文将介绍如何在不涉及张量运算的前提下,完成该导数计算。

1. 导数计算的背景和动机

在许多工程问题中,我们需要计算一个矩阵函数对一个向量变量的导数,这些导数在求解优化问题过程中非常重要。但是矩阵对向量的求导结果,是一个三维张量。这导致在不具有张量运算知识的情况下很难进行数学推导和代码编写。

为了避免复杂的张量运算,我们可以利用矩阵的向量化和克罗内克积等技巧,简化计算过程。主要思想是将矩阵对向量的导数(这是一个张量)转换为向量对向量的导数(这是一个矩阵)。然后通过“Vec技巧”,使得求得的矩阵可以用于泰勒展开式或其他数学推导中,作为张量的代替。

1.1. 克罗内克积(Kronecker Product)

克罗内克积是一种用于计算多维数组(如矩阵)的运算。假设 A ∈ R l × m \mathbf{A} \in \mathbb{R}^{l \times m} ARl×m B ∈ R n × p \mathbf{B} \in \mathbb{R}^{n \times p} BRn×p,则它们的克罗内克积定义为:

A ⊗ B = [ a 11 B ⋯ a 1 m B ⋮ ⋱ ⋮ a l 1 B ⋯ a l m B ] ∈ R l n × m p . \mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11} \mathbf{B} & \cdots & a_{1m} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{l1} \mathbf{B} & \cdots & a_{lm} \mathbf{B} \end{bmatrix} \in \mathbb{R}^{ln \times mp}. AB= a11Bal1Ba1mBalmB Rln×mp.

1.2. 向量化操作符(Vectorization Operator)

向量化操作符用于将矩阵转换为向量。假设:

A = [ a 1 a 2 ⋯ a m ] ∈ R l × m . \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \end{bmatrix} \in \mathbb{R}^{l \times m}. A=[a1a2am]Rl×m.

向量化操作符定义为:

vec ( A ) = [ a 1 a 2 ⋮ a m ] ∈ R l m × 1 . \text{vec}(\mathbf{A}) = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} \in \mathbb{R}^{lm \times 1}. vec(A)= a1a2am Rlm×1.

2. Vec技巧

Vec技巧是利用向量化和克罗内克积简化矩阵导数计算的一个方法。具体公式如下:
vec ( A B C ) = ( C ⊤ ⊗ A ) vec ( B ) . \text{vec}(\mathbf{A}\mathbf{B}\mathbf{C}) = (\mathbf{C}^{\top} \otimes \mathbf{A}) \text{vec}(\mathbf{B}). vec(ABC)=(CA)vec(B).

对于两个矩阵 A \mathbf{A} A B \mathbf{B} B,可以进一步简化为:
vec ( A B ) = ( B ⊤ ⊗ I ) vec ( A ) = ( I ⊗ A ) vec ( B ) . \text{vec}(\mathbf{A}\mathbf{B}) = (\mathbf{B}^{\top} \otimes \mathbf{I}) \text{vec}(\mathbf{A}) = (\mathbf{I} \otimes \mathbf{A}) \text{vec}(\mathbf{B}). vec(AB)=(BI)vec(A)=(IA)vec(B).

引入该技巧后,这使得我们可以通过向量化操作计算矩阵对向量的导数。考虑到记号简明性,在未加说明的情况下,我们将“向量化后的矩阵对向量的导数”来指代“矩阵对向量的导数”:
∂ A ( x ) ∂ x = ∂ vec ( A ( x ) ) ∂ x ∈ R l m × n . \frac{\partial \mathbf{A}(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \text{vec}(\mathbf{A}(\mathbf{x}))}{\partial \mathbf{x}} \in \mathbb{R}^{lm \times n}. xA(x)=xvec(A(x))Rlm×n.

3. 应用于二阶泰勒展开

通过上述技巧,我们可以计算出二阶泰勒展开的结果。设 A = ∂ f ∂ x \mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} A=xf,则二阶导数为:
∂ ∂ x ( vec ( I A Δ x ) ) = ( Δ x ⊤ ⊗ I ) ∂ vec ( A ) ∂ x . \frac{\partial}{\partial\mathbf{x}}\left(\text{vec}\left(\mathbf{I}\mathbf{A}\Delta \mathbf{x}\right)\right) = \left(\Delta \mathbf{x}^{\top} \otimes \mathbf{I}\right) \frac{\partial \text{vec}(\mathbf{A})}{\partial \mathbf{x}}. x(vec(IAΔx))=(ΔxI)xvec(A).

最终,我们得到二阶泰勒展开式:
f ( x + Δ x ) = f ( x ) + A Δ x + 1 2 ( Δ x ⊤ ⊗ I ) ∂ vec ( A ) ∂ x Δ x . \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) = \mathbf{f}(\mathbf{x}) + \mathbf{A} \Delta \mathbf{x} + \frac{1}{2} \left(\Delta \mathbf{x}^{\top} \otimes \mathbf{I}\right) \frac{\partial \text{vec}(\mathbf{A})}{\partial \mathbf{x}} \Delta \mathbf{x}. f(x+Δx)=f(x)+AΔx+21(ΔxI)xvec(A)Δx.

这样对于接下来的数学推导或者代码编写都带来了便利。

在某些情况下,我们需要对转置矩阵求导,此时可以使用换位矩阵(commutator matrix) T \mathbf{T} T,满足 T vec ( A ) = vec ( A ⊤ ) \mathbf{T}\text{vec}(\mathbf{A}) = \text{vec}(\mathbf{A}^{\top}) Tvec(A)=vec(A)。公式如下:
∂ ∂ x ( A ⊤ ( x ) B ) = ( B ⊤ ⊗ I ) T ∂ A ∂ x . \frac{\partial }{\partial \mathbf{x}}(\mathbf{A}^{\top}(\mathbf{x}) \mathbf{B}) = (\mathbf{B}^{\top} \otimes \mathbf{I}) \mathbf{T}\frac{\partial \mathbf{A}}{\partial \mathbf{x}}. x(A(x)B)=(BI)TxA.

http://www.yayakq.cn/news/915926/

相关文章:

  • 济南营销型网站建设贵吗网站备案 取名资讯通不过
  • 成都快速建站公司怎么投诉做网站的公司
  • 佛山营销网站建设多少钱哈尔滨市公共资源交易中心
  • 什么网站可以教做面包为什么网站建设比商场要贵
  • 吕梁网站定制张掖网站建设公司
  • 网站角色权限正规网站建设建设公司
  • 公司网站后台更新一二三四在线观看免费中文动漫版
  • 如何提升进入网站的速度网站设计制作代码
  • 网站开发技术网站模板淘宝客 wordpress主题
  • 网站建设需要考虑什么因素首页关键词是不是一个网站的核心关键词所在
  • 禅城区城乡建设局网站html模板图片
  • 阿里云万网网站网站搜索引擎怎样做
  • 北京建设工程质量总站网站电子政务网站建设实践报告
  • 软膜做网站有用吗网站规划与建设规划书
  • 有没有做减压的网站广告设计图素材
  • 合工大网站建设试卷清远做网站的有哪些
  • 专门为98k做的网站wordpress xampp 本地
  • 修改网站dns禾量电商小程序
  • 网站创建需要什么如何做印刷报价网站
  • 网站seo搜索引擎优化怎么做建设一个大型电影网站
  • 怎么做网站推广知乎淘宝客网站用什么软件做
  • 鹤壁网站设计慈溪做网站公司哪家好
  • 建购物网站要多少钱wordpress 迁移 步骤
  • 广州网站建设新科分公司网站添加 百度商桥
  • 沧州网站建设多少钱湖南鸿泰电力建设有限公司网站
  • 地产建站规划太原手机网站开发
  • 网站必须实名认证吗网站推广软件费用是多少
  • 电商网站建设与运营专业注册网站名字
  • 网站交互行为代码改wordpress地址
  • 免费域名做网站网站开发与应用是什么