当前位置: 首页 > news >正文

广东企业网站建设建立健全长效机制

广东企业网站建设,建立健全长效机制,企业网站建立策划书,wordpress 批量添加用户策略梯度定理公式的详细推导 以下是策略梯度定理公式从基础概率公式到最终形式的完整推导,帮助更清晰地理解推导过程中的每一个步骤。 1. 策略梯度的目标 我们希望最大化期望累积奖励 ( J ( θ ) J(\theta) J(θ) ),其定义为: J ( θ ) E…

策略梯度定理公式的详细推导

以下是策略梯度定理公式从基础概率公式到最终形式的完整推导,帮助更清晰地理解推导过程中的每一个步骤。


1. 策略梯度的目标

我们希望最大化期望累积奖励 ( J ( θ ) J(\theta) J(θ) ),其定义为:

J ( θ ) = E π θ [ R t ] J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \right] J(θ)=Eπθ[Rt]

根据期望的定义,可以将 ( J ( θ ) J(\theta) J(θ) ) 写为积分形式:

J ( θ ) = ∫ τ P ( τ ; θ ) R t d τ J(\theta) = \int_{\tau} P(\tau; \theta) R_t \, d\tau J(θ)=τP(τ;θ)Rtdτ

其中:

  • ( τ = ( s 0 , a 0 , s 1 , a 1 , … ) \tau = (s_0, a_0, s_1, a_1, \dots) τ=(s0,a0,s1,a1,) ) 表示一条轨迹;
  • ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 是轨迹的概率分布。

接下来,我们对目标 ( J ( θ ) J(\theta) J(θ) ) 求梯度:

∇ θ J ( θ ) = ∇ θ ∫ τ P ( τ ; θ ) R t d τ \nabla_\theta J(\theta) = \nabla_\theta \int_{\tau} P(\tau; \theta) R_t \, d\tau θJ(θ)=θτP(τ;θ)Rtdτ

根据微积分中的交换求导与积分的规则,将梯度符号与积分符号交换位置:

∇ θ J ( θ ) = ∫ τ ∇ θ [ P ( τ ; θ ) R t ] d τ \nabla_\theta J(\theta) = \int_{\tau} \nabla_\theta \left[ P(\tau; \theta) R_t \right] d\tau θJ(θ)=τθ[P(τ;θ)Rt]dτ

因为 ( R t R_t Rt ) 不依赖于参数 ( θ \theta θ ),所以可以提取出来:

∇ θ J ( θ ) = ∫ τ R t ∇ θ P ( τ ; θ ) d τ \nabla_\theta J(\theta) = \int_{\tau} R_t \nabla_\theta P(\tau; \theta) \, d\tau θJ(θ)=τRtθP(τ;θ)dτ


2. 引入对数梯度

为了化简 ( ∇ θ P ( τ ; θ ) \nabla_\theta P(\tau; \theta) θP(τ;θ) ),我们引入对数梯度技巧

∇ θ P ( τ ; θ ) = P ( τ ; θ ) ⋅ ∇ θ log ⁡ P ( τ ; θ ) \nabla_\theta P(\tau; \theta) = P(\tau; \theta) \cdot \nabla_\theta \log P(\tau; \theta) θP(τ;θ)=P(τ;θ)θlogP(τ;θ)

将其代入梯度公式:

∇ θ J ( θ ) = ∫ τ R t ⋅ P ( τ ; θ ) ⋅ ∇ θ log ⁡ P ( τ ; θ ) d τ \nabla_\theta J(\theta) = \int_{\tau} R_t \cdot P(\tau; \theta) \cdot \nabla_\theta \log P(\tau; \theta) \, d\tau θJ(θ)=τRtP(τ;θ)θlogP(τ;θ)dτ

根据概率分布 ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 的性质,可以用期望形式重新表示:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ P ( τ ; θ ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log P(\tau; \theta) \right] θJ(θ)=Eπθ[RtθlogP(τ;θ)]

这一步的重要性在于将积分转化为在策略 ( π θ \pi_\theta πθ ) 下的期望,使得后续计算能够通过采样来实现。


3. 轨迹概率分布的分解

轨迹 ( τ \tau τ ) 的概率 ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 可以分解为以下形式:

P ( τ ; θ ) = P ( s 0 ) ∏ t = 0 ∞ π θ ( a t ∣ s t ) P ( s t + 1 ∣ s t , a t ) P(\tau; \theta) = P(s_0) \prod_{t=0}^{\infty} \pi_\theta(a_t | s_t) P(s_{t+1} | s_t, a_t) P(τ;θ)=P(s0)t=0πθ(atst)P(st+1st,at)

其中:

  • ( P ( s 0 ) P(s_0) P(s0) ):初始状态的概率;
  • ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ):策略分布,表示在状态 ( s t s_t st ) 下采取动作 ( a t a_t at ) 的概率;
  • ( P ( s t + 1 ∣ s t , a t ) P(s_{t+1} | s_t, a_t) P(st+1st,at) ):环境的状态转移概率。

对 ( log ⁡ P ( τ ; θ ) \log P(\tau; \theta) logP(τ;θ) ) 求导时,仅有 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ) 与参数 ( θ \theta θ ) 相关,因此可化简为:

∇ θ log ⁡ P ( τ ; θ ) = ∑ t = 0 ∞ ∇ θ log ⁡ π θ ( a t ∣ s t ) \nabla_\theta \log P(\tau; \theta) = \sum_{t=0}^{\infty} \nabla_\theta \log \pi_\theta(a_t | s_t) θlogP(τ;θ)=t=0θlogπθ(atst)

将此结果代入梯度公式:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∑ t = 0 ∞ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \sum_{t=0}^{\infty} \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtt=0θlogπθ(atst)]


4. 化简最终公式

将期望中的求和移到外部,可以得到:

∇ θ J ( θ ) = ∑ t = 0 ∞ E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \sum_{t=0}^{\infty} \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=t=0Eπθ[Rtθlogπθ(atst)]

在每个时间步 ( t t t ),我们只需要计算与当前动作 ( a t a_t at ) 和状态 ( s t s_t st ) 相关的对数梯度,从而得到:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtθlogπθ(atst)]

这就是策略梯度定理的最终公式。


5. 使用对数梯度性质验证

策略梯度公式的核心在于以下对数梯度性质:

∇ θ π θ ( a t ∣ s t ) = π θ ( a t ∣ s t ) ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) \nabla_\theta \pi_\theta(a_t | s_t) = \pi_\theta(a_t | s_t) \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) θπθ(atst)=πθ(atst)θlogπθ(atst)

证明如下:

  • 根据对数定义, ( log ⁡ x \log x logx ) 的导数为 ( 1 x \frac{1}{x} x1 );
  • 对 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ) 求梯度:

∇ θ log ⁡ π θ ( a t ∣ s t ) = 1 π θ ( a t ∣ s t ) ⋅ ∇ θ π θ ( a t ∣ s t ) \nabla_\theta \log \pi_\theta(a_t | s_t) = \frac{1}{\pi_\theta(a_t | s_t)} \cdot \nabla_\theta \pi_\theta(a_t | s_t) θlogπθ(atst)=πθ(atst)1θπθ(atst)

两边乘以 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ):

∇ θ π θ ( a t ∣ s t ) = π θ ( a t ∣ s t ) ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) \nabla_\theta \pi_\theta(a_t | s_t) = \pi_\theta(a_t | s_t) \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) θπθ(atst)=πθ(atst)θlogπθ(atst)

将此性质代入公式,概率 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ) 被约去,得到:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtθlogπθ(atst)]


总结

通过以上详细推导,可以看出策略梯度定理的核心在于以下两点:

  1. 引入对数梯度性质:将复杂的概率梯度转化为对数形式;
  2. 利用轨迹概率分布的分解:化简梯度公式,使得计算集中在策略部分 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) )。

最终的策略梯度公式为:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtθlogπθ(atst)]

这一公式既简洁又高效,是策略梯度方法的理论基础。

后记

2024年12月12日17点00分于上海,在GPT4o大模型辅助下完成。

http://www.yayakq.cn/news/167187/

相关文章:

  • 厦门做英文网站如何用wordpress制作二级目录
  • 校园网站的建设费用有动态图片的网站源码
  • 企业网站建设 邮箱响应式网站的原理
  • 厦门网站建设网络推广企业seo顾问
  • 兰州彩票网站制作秦淮做网站价格
  • 明星设计网站风格说明百度推广开户需要多少钱
  • 电商网站seo排名国外网站 国内做镜像
  • 做网站友情链接都写什么建wap手机网站
  • 网站正在建设中 页面店铺推广软文300字
  • 网站建设比较合理的流程建站公司网站 phpwind
  • 怎么用ip做网站海南新闻在线中心
  • 电脑制作网站总么做政务咨询投诉举报网站建设
  • 网站流量统计分析互联网营销外包推广
  • 网站转发浙江省建筑信息港
  • 古田网站建设小米商城官方网站入口
  • 电子商务网站建设与实践第一章课后房山青岛网站建设
  • 国外网站推荐网址大全hao123上网导航
  • 网站打不开用什么浏览器全世界做会展介绍的网站排名
  • 莱州市规划建设管理局网站wordpress获取分类导航
  • 个人可以做网站导航广州建设专业网站
  • 设计网站思路如何写网页图片提取在线
  • 做最好的导航网站房山企业网站建设公司
  • 后台的企业网站模板wordpress支持论坛
  • 兰州建设网站的网站阿里云1m宽带做网站卡吗
  • 备案时网站名称可以重复吗莆田哪里有学做网站的
  • 珠海正规网站制作系统广州市数商云网络科技有限公司
  • 网站攻击一般有那些wordpress萌主题下载
  • 网站开发详细报价wordpress媒体库查看404
  • 做购物网站的费用推广模式怎么写
  • 个人工作室网站设计怎样做网站营销