当前位置: 首页 > news >正文

做网站的核验单 是下载的吗汉字市城乡建设规划局官方网站

做网站的核验单 是下载的吗,汉字市城乡建设规划局官方网站,制作公司网页可以用网上图片吗,国内优秀的响应式网站计算图结构 分析: 起始节点 ab 5 - 3ac 2b 3d 5b 6e 7c d^2f 2e最终输出 g 3f - o(其中 o 是另一个输入) 前向传播 前向传播按照上述顺序计算每个节点的值。 反向传播过程 反向传播的目标是计算损失函数(这里假设为…

计算图结构

**加粗样式**

分析:

  1. 起始节点 a
  2. b = 5 - 3a
  3. c = 2b + 3
  4. d = 5b + 6
  5. e = 7c + d^2
  6. f = 2e
  7. 最终输出 g = 3f - o(其中 o 是另一个输入)

前向传播

前向传播按照上述顺序计算每个节点的值。

反向传播过程

反向传播的目标是计算损失函数(这里假设为 g)对每个中间变量和输入的偏导数。从右向左进行计算:

  1. ∂g/∂o = -1
  2. ∂g/∂f = 3
  3. ∂f/∂e = 2
  4. ∂e/∂c = 7
  5. ∂e/∂d = 2d
  6. ∂d/∂b = 5
  7. ∂c/∂b = 2
  8. ∂b/∂a = -3

链式法则应用

使用链式法则计算出 g 对每个变量的全导数:

  1. dg/df = ∂g/∂f = 3
  2. dg/de = (∂g/∂f) * (∂f/∂e) = 3 * 2 = 6
  3. dg/dc = (dg/de) * (∂e/∂c) = 6 * 7 = 42
  4. dg/dd = (dg/de) * (∂e/∂d) = 6 * 2d
  5. dg/db = (dg/dc) * (∂c/∂b) + (dg/dd) * (∂d/∂b)
    = 42 * 2 + 6 * 2d * 5
    = 84 + 60d
  6. dg/da = (dg/db) * (∂b/∂a)
    = (84 + 60d) * (-3)
    = -252 - 180d

最终梯度

最终得到 g 对输入 a 和 o 的梯度:

  • dg/da = -252 - 180d
  • dg/do = -1

代码实现

静态图

import mathclass Node:"""表示计算图中的一个节点。每个节点都可以存储一个值、梯度,并且知道如何计算前向传播和反向传播。"""def __init__(self, value=None):self.value = value  # 节点的值self.gradient = 0   # 节点的梯度self.parents = []   # 父节点列表self.forward_fn = lambda: None  # 前向传播函数self.backward_fn = lambda: None  # 反向传播函数def __add__(self, other):"""加法操作"""return self._create_binary_operation(other, lambda x, y: x + y, lambda: (1, 1))def __mul__(self, other):"""乘法操作"""return self._create_binary_operation(other, lambda x, y: x * y, lambda: (other.value, self.value))def __sub__(self, other):"""减法操作"""return self._create_binary_operation(other, lambda x, y: x - y, lambda: (1, -1))def __pow__(self, power):"""幂运算"""result = Node()result.parents = [self]def forward():result.value = math.pow(self.value, power)def backward():self.gradient += power * math.pow(self.value, power-1) * result.gradientresult.forward_fn = forwardresult.backward_fn = backwardreturn resultdef _create_binary_operation(self, other, forward_op, gradient_op):"""创建二元操作的辅助方法。用于简化加法、乘法和减法的实现。"""result = Node()result.parents = [self, other]def forward():result.value = forward_op(self.value, other.value)def backward():grads = gradient_op()self.gradient += grads[0] * result.gradientother.gradient += grads[1] * result.gradientresult.forward_fn = forwardresult.backward_fn = backwardreturn resultdef topological_sort(node):"""对计算图进行拓扑排序。确保在前向和反向传播中按正确的顺序处理节点。"""visited = set()topo_order = []def dfs(n):if n not in visited:visited.add(n)for parent in n.parents:dfs(parent)topo_order.append(n)dfs(node)return topo_order# 构建计算图
a = Node(2)  # 假设a的初始值为2
o = Node(1)  # 假设o的初始值为1# 按照给定的数学表达式构建计算图
b = Node(5) - a * Node(3)
c = b * Node(2) + Node(3)
d = b * Node(5) + Node(6)
e = c * Node(7) + d ** 2
f = e * Node(2)
g = f * Node(3) - o# 前向传播
sorted_nodes = topological_sort(g)
for node in sorted_nodes:node.forward_fn()# 反向传播
g.gradient = 1  # 设置输出节点的梯度为1
for node in reversed(sorted_nodes):node.backward_fn()# 打印结果
print(f"g = {g.value}")
print(f"dg/da = {a.gradient}")
print(f"dg/do = {o.gradient}")# 验证手动计算的结果
d_value = 5 * b.value + 6
expected_dg_da = -252 - 180 * d_value
print(f"Expected dg/da = {expected_dg_da}")
print(f"Difference: {abs(a.gradient - expected_dg_da)}")

动态图

import mathclass Node:"""表示计算图中的一个节点。实现了动态计算图的核心功能,包括前向计算和反向传播。"""def __init__(self, value, children=(), op=''):self.value = value  # 节点的值self.grad = 0       # 节点的梯度self._backward = lambda: None  # 反向传播函数,默认为空操作self._prev = set(children)  # 前驱节点集合self._op = op  # 操作符,用于调试def __add__(self, other):"""加法操作"""other = other if isinstance(other, Node) else Node(other)result = Node(self.value + other.value, (self, other), '+')def _backward():self.grad += result.gradother.grad += result.gradresult._backward = _backwardreturn resultdef __mul__(self, other):"""乘法操作"""other = other if isinstance(other, Node) else Node(other)result = Node(self.value * other.value, (self, other), '*')def _backward():self.grad += other.value * result.gradother.grad += self.value * result.gradresult._backward = _backwardreturn resultdef __pow__(self, other):"""幂运算"""assert isinstance(other, (int, float)), "only supporting int/float powers for now"result = Node(self.value ** other, (self,), f'**{other}')def _backward():self.grad += (other * self.value**(other-1)) * result.gradresult._backward = _backwardreturn resultdef __neg__(self):"""取反操作"""return self * -1def __sub__(self, other):"""减法操作"""return self + (-other)def __truediv__(self, other):"""除法操作"""return self * other**-1def __radd__(self, other):"""反向加法"""return self + otherdef __rmul__(self, other):"""反向乘法"""return self * otherdef __rtruediv__(self, other):"""反向除法"""return other * self**-1def tanh(self):"""双曲正切函数"""x = self.valuet = (math.exp(2*x) - 1)/(math.exp(2*x) + 1)result = Node(t, (self,), 'tanh')def _backward():self.grad += (1 - t**2) * result.gradresult._backward = _backwardreturn resultdef backward(self):"""执行反向传播,计算梯度。使用拓扑排序确保正确的反向传播顺序。"""topo = []visited = set()def build_topo(v):if v not in visited:visited.add(v)for child in v._prev:build_topo(child)topo.append(v)build_topo(self)self.grad = 1  # 设置输出节点的梯度为1for node in reversed(topo):node._backward()  # 对每个节点执行反向传播def main():"""主函数,用于测试自动微分系统。构建一个计算图,执行反向传播,并验证结果。"""# 构建计算图a = Node(2)o = Node(1)b = Node(5) - a * 3c = b * 2 + 3d = b * 5 + 6e = c * 7 + d ** 2f = e * 2g = f * 3 - o# 反向传播g.backward()# 打印结果print(f"g = {g.value}")print(f"dg/da = {a.grad}")print(f"dg/do = {o.grad}")# 验证手动计算的结果d_value = 5 * b.value + 6expected_dg_da = -252 - 180 * d_valueprint(f"Expected dg/da = {expected_dg_da}")print(f"Difference: {abs(a.grad - expected_dg_da)}")if __name__ == "__main__":main()

解释:

  1. Node 类代表计算图中的一个节点,包含值、梯度、父节点以及前向和反向传播函数。
  2. 重载的数学运算符 (__add__, __mul__, __sub__, __pow__) 允许直观地构建计算图。
  3. _create_binary_operation 方法用于创建二元操作,简化了加法、乘法和减法的实现。
  4. topological_sort 函数对计算图进行拓扑排序,确保正确的计算顺序。
import mathclass Node:"""表示计算图中的一个节点。实现了动态计算图的核心功能,包括前向计算和反向传播。"""def __init__(self, value, children=(), op=''):self.value = value  # 节点的值self.grad = 0       # 节点的梯度self._backward = lambda: None  # 反向传播函数,默认为空操作self._prev = set(children)  # 前驱节点集合self._op = op  # 操作符,用于调试def __add__(self, other):"""加法操作"""other = other if isinstance(other, Node) else Node(other)result = Node(self.value + other.value, (self, other), '+')def _backward():self.grad += result.gradother.grad += result.gradresult._backward = _backwardreturn resultdef __mul__(self, other):"""乘法操作"""other = other if isinstance(other, Node) else Node(other)result = Node(self.value * other.value, (self, other), '*')def _backward():self.grad += other.value * result.gradother.grad += self.value * result.gradresult._backward = _backwardreturn resultdef __pow__(self, other):"""幂运算"""assert isinstance(other, (int, float)), "only supporting int/float powers for now"result = Node(self.value ** other, (self,), f'**{other}')def _backward():self.grad += (other * self.value**(other-1)) * result.gradresult._backward = _backwardreturn resultdef __neg__(self):"""取反操作"""return self * -1def __sub__(self, other):"""减法操作"""return self + (-other)def __truediv__(self, other):"""除法操作"""return self * other**-1def __radd__(self, other):"""反向加法"""return self + otherdef __rmul__(self, other):"""反向乘法"""return self * otherdef __rtruediv__(self, other):"""反向除法"""return other * self**-1def tanh(self):"""双曲正切函数"""x = self.valuet = (math.exp(2*x) - 1)/(math.exp(2*x) + 1)result = Node(t, (self,), 'tanh')def _backward():self.grad += (1 - t**2) * result.gradresult._backward = _backwardreturn resultdef backward(self):"""执行反向传播,计算梯度。使用拓扑排序确保正确的反向传播顺序。"""topo = []visited = set()def build_topo(v):if v not in visited:visited.add(v)for child in v._prev:build_topo(child)topo.append(v)build_topo(self)self.grad = 1  # 设置输出节点的梯度为1for node in reversed(topo):node._backward()  # 对每个节点执行反向传播def main():"""主函数,用于测试自动微分系统。构建一个计算图,执行反向传播,并验证结果。"""# 构建计算图a = Node(2)o = Node(1)b = Node(5) - a * 3c = b * 2 + 3d = b * 5 + 6e = c * 7 + d ** 2f = e * 2g = f * 3 - o# 反向传播g.backward()# 打印结果print(f"g = {g.value}")print(f"dg/da = {a.grad}")print(f"dg/do = {o.grad}")# 验证手动计算的结果d_value = 5 * b.value + 6expected_dg_da = -252 - 180 * d_valueprint(f"Expected dg/da = {expected_dg_da}")print(f"Difference: {abs(a.grad - expected_dg_da)}")if __name__ == "__main__":main()

解释:

  1. Node 类是核心,它代表计算图中的一个节点,并实现了各种数学运算。

  2. 每个数学运算(如 __add__, __mul__ 等)都创建一个新的 Node,并定义了相应的反向传播函数。

  3. backward 方法实现了反向传播算法,使用拓扑排序确保正确的计算顺序。

http://www.yayakq.cn/news/122528/

相关文章:

  • 东风地区网站建设价格低seo如何推广网站
  • 哪些网站做的不好想做外贸生意如何起步
  • 网站控制台做网站产品图片素材
  • 化妆品网站设计模板如何说服别人做网站
  • 做网站前段用什么软件有没有做面粉美食的网站
  • 如何做一份网站的数据分析做电商网站必需知道qc
  • 做国外有那些网站比较好的弋阳县建设工程网站
  • 深圳专业做网站建设代码级优化wordpress
  • 彭水网站建设建设银行查余额网站
  • 订阅号可以做网站链接吗时尚女装网站模版
  • 2008vps做网站成都计算机培训机构排名前十
  • 微金所网站谁做的系统开发平台
  • 在线网站搭建系统如何做自己的网站后台
  • 网站的数据库丢失wordpress网盘搜索
  • 誉字号网站用自己的电脑建设网站
  • 网站后台无法上传照片3网合一网站
  • 2008建立的php网站慢网站对联模板
  • 收费的网站如何免费洛阳app制作公司
  • 宁波免费建站外包公司长沙景点门票价格表
  • 网站特色分析图怎么做外链发布的平台最好是
  • 在哪找人做网站十大免费游戏网站
  • 网站建设费用的会计英文网站建设600
  • 网站建设阐述装饰网站建设效果图
  • 有哪些做农产品的网站自已建个人网站
  • 做的网站需要什么技术支持dede网站模板怎么安装
  • 建筑公司网站石家庄人力资源六大模块
  • 做网站企业经营范围高度重视网站建设 利用网站 接受监督
  • 无锡做装修网站全网普盖网站建设河南
  • 广州网站设计联系方式网站开发人员是干嘛的
  • 佛山企业网站开发公司长兴县网站建设