当前位置: 首页 > news >正文

工会网站群建设方案企业怎样做网站

工会网站群建设方案,企业怎样做网站,工信部网站验证码,虎皮椒支付WordPress在昇腾AI处理器上训练PyTorch框架模型时,可能由于环境变量设置问题、训练脚本代码问题,导致打印出的堆栈报错与实际错误并不一致、脚本运行异常等问题,那么本期就分享几个关于PyTorch模型训练问题的典型案例,并给出原因分析及解决…

在昇腾AI处理器上训练PyTorch框架模型时,可能由于环境变量设置问题、训练脚本代码问题,导致打印出的堆栈报错与实际错误并不一致、脚本运行异常等问题,那么本期就分享几个关于PyTorch模型训练问题的典型案例,并给出原因分析及解决方法:

1、在训练模型时报错“Inner Error xxxx”,但打印的堆栈报错信息与实际错误无关

2、在模型训练时报错“terminate called after throwing an instance of 'c10::Error' what(): 0 INTERNAL ASSERT”

3、在模型训练时报错“MemCopySync:drvMemcpy failed.”

01 在训练模型时报错“Inner Error xxxx”,但打印的堆栈报错信息与实际错误无关

问题现象描述

报错截图举例:

%E5%9B%BE%E7%89%871.png

原因分析

NPU模型训练时默认为异步运行,因此打印出的堆栈报错与实际错误并不一致。如果想要打印出与实际错误相对应的堆栈报错信息,需要修改环境变量将运行模式改为同步运行。

解决措施

可以在以下方案中选择一种来解决该问题,然后再次运行模型,即可得到与实际错误一致的堆栈报错信息:

1、将环境变量TASK_QUEUE_ENABLE设置为0:

export TASK_QUEUE_ENABLE=0

2、若用户使用的PyTorch为2.1版本,也可将环境变量ASCEND_LAUNCH_BLOCKING修改为为1:

export ASCEND_LAUNCH_BLOCKING=1

02 在模型训练时报错“terminate called after throwing an instance of 'c10::Error' what(): 0 INTERNAL ASSERT”

问题现象描述

报错示例如下:

terminate called after throwing an instance of 'c10::Error' what(): 0 INTERNAL ASSERT FAILED at /***/pytorch/c10/npu/NPUStream.cpp:146, please report a bug to PyTorch. Could not compute stream ID for Oxffff9f77fd28 on device -1 (something has gone horribly wrong!) (NPUStream_getStreamId at /***/pytorch/c10/npu/NPUStream.cpp:146 
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxxll::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x74 (0xffffa0c11fe4 in /usr/local/lib64/python3.7/site.packages/torch/lib/libc10.so)

原因分析

执行代码后出现报错。

import torch 
import torch_npu 
def test_cpu(): input = torch.randn(2000, 1000).detach().requires_grad_() output = torch.sum(input) output.backward(torch.ones_like(output)) 
def test_npu(): input = torch.randn(2000, 1000).detach().requires_grad_().npu() output = torch.sum(input) output.backward(torch.ones_like(output)) 
if __name__ == "__main__": test_cpu() torch_npu.npu.set_device("npu:0") test_npu()

在运行backward运算时,若没有设置device,程序会自动默认初始化device为0,相当于执行了set_device("npu:0")。由于目前不支持切换device进行计算,若再通过set_decice()方法手动设置device设备,则可能出现该错误。

解决措施

在运行backward运算前,通过set_decice()方法手动设置device。

原代码如下:

if __name__ == "__main__":

    test_cpu() 

    torch_npu.npu.set_device("npu:0") 

    test_npu()

修改后代码如下:

if __name__ == "__main__":

    torch_npu.npu.set_device("npu:0") 

    test_cpu() 

    test_npu()

03 在模型训练时报错“MemCopySync:drvMemcpy failed.”

问题现象描述

  • shell脚本报错信息如下:
RuntimeError: Run:/usr1/workspace/PyTorch_Apex_Daily_c20tr5/CODE/aten/src/ATen/native/npu/utils/OpParamMaker.h:280 NPU error,NPU error code is:500002 
[ERROR] RUNTIME(160809)kernel task happen error, retCode=0x28, [aicpu timeout]. 
[ERROR] RUNTIME(160809)aicpu kernel execute failed, device_id=0, stream_id=512, task_id=24, fault so_name=, fault kernel_name=, extend_info=. 
Error in atexit._run_exitfuncs: 
Traceback (most recent call last): 
File "/usr/local/python3.7.5/lib/python3.7/site-packages/torch/__init__.py", line 429, in _npu_shutdown torch._C._npu_shutdown() 
RuntimeError: npuSynchronizeDevice:/usr1/workspace/PyTorch_Apex_Daily_c20tr5/CODE/c10/npu/NPUStream.cpp:806 NPU error, error code is 0
  • 日志报错信息如下:
[ERROR] RUNTIME(12731,python3.7):2021-02-02-22:23:56.475.679 [../../../../../../runtime/feature/src/npu_driver.cc:1408]12828 MemCopySync:drvMemcpy failed: dst=0x108040288000, destMax=1240, src=0x7fe7649556d0, size=1240, kind=1, drvRetCode=17! 
[ERROR] RUNTIME(12731,python3.7):2021-02-02-22:23:56.475.698 [../../../../../../runtime/feature/src/logger.cc:113]12828 KernelLaunch:launch kernel failed, kernel=140631803535760/ArgMinWithValue_tvmbin, dim=32, stream=0x55b22b3def50 
[ERROR] RUNTIME(12731,python3.7):2021-02-02-22:23:56.475.717 [../../../../../../runtime/feature/src/api_c.cc:224]12828 rtKernelLaunch:ErrCode=207001, desc=[module new memory error], InnerCode=0x70a0002

原因分析

样例脚本如下:

import torch 
import torch_npu 
def test_sum(): xs_shape = [22400, 8] ys_shape = [22400, 8] gt_bboxes_shape = [22400, 8,4] xs = torch.rand(xs_shape).npu() ys = torch.rand(ys_shape).npu() gt_bboxes = torch.rand(gt_bboxes_shape).npu().half() left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys # stream = torch_npu.npu.current_stream() # stream.synchronize() # left, top 结果是fp32,  right, bottom 结果是fp16, # print(left.dtype, top.dtype, right.dtype, bottom.dtype) bbox_targets = torch.stack((left, top, right, bottom), -1)  #报错位置在这里 # stream.synchronize() bbox_targets = torch.sum(bbox_targets)

根据shell和日志报错信息,两者报错信息不匹配。shell报错是在同步操作中和AI CPU错误,而日志报错信息却是在min算子(内部调用ArgMinWithValue_tvmbin),二者报错信息不对应。一般这类问题出现的原因是由于日志生成的报错信息滞后。报错信息滞后可能是由于AI CPU算子的异步执行,导致报错信息滞后。

解决措施

对于该报错需要根据实际的错误来定位,可参考如下步骤进行处理:

1、通过关闭多任务算子下发后,发现结果不变,推断在shell脚本报错位置和日志报错算子之前就已出现错误。

2、根据报错加上stream同步操作,缩小错误范围,定位错误算子。stream同步操作的作用在于其要求代码所运行到的位置之前的所有计算必须为完成状态,从而定位错误位置。

3、通过在代码中加上stream同步操作,确定报错算子为stack。

4、打印stack所有参数的shape、dtype、npu_format,通过构造单算子用例复现问题。定位到问题原因为减法计算输入参数数据类型不同,导致a - b和b - a结果的数据类型不一致,最终在stack算子中报错。

5、将stack入参数据类型转换为一致即可临时规避问题。

http://www.yayakq.cn/news/832311/

相关文章:

  • 网站怎么做百度关键字搜索搜索引擎优化营销
  • 怎样建设一个网站教学中国外贸出口网站
  • 无锡做食品网站的公司哪家好网站现在怎么做排名
  • 青岛网站搭建公司哪家好展厅内部设计
  • html 网站链接app网站开发河 又
  • dw做网站注册页代码网站模版设计
  • 权大师的网站是哪个公司做的推广标题怎么写
  • 佛山网站建设找哪家微信小程序页面跳转
  • 沈阳网站制作定制策划百度站长工具平台
  • 响应式企业网站案例广告设计公司专业报价表
  • 做网站要幕布干啥呢天元建设集团有限公司劳动合同模板
  • 国外做家纺的网站荆门网站开发有哪些
  • 网站项目进度搜索风云榜
  • cdr可不可做网站教育网站开发公司
  • 建设宠物网站的可行性学校后勤网站建设方案
  • 陕西省建设工程质量监督站网站备案网站名称更改
  • 移动网站在线开发工具合肥市建设投资有限公司
  • 基于微信公众号开发网站开发开网站建设需要办什么手续
  • 网站的优化从哪里进行北京网站名称注册证书
  • 杭州网站运营哪里有好的网站
  • 物流好的网站模板漳州网站设计制作
  • 嘉兴本地推广网站wordpress评论头像插件
  • 郑州做优惠券网站的公司盐城网站开发
  • 网站制作用什么语言没营业执照怎么做网站
  • 宁波免费建站seo排名做一些购物网站
  • 全国各地网站开发外包wordpress 转英文
  • ssc网站建设担保交易sql数据库做的网站怎么发布
  • 创业网站建设规划书免费注册163
  • 手机网站建设代理商昆明公司网站开发
  • 互联网建设汕头关键词优化平台