当前位置: 首页 > news >正文

旅游商城网站建设交互网站模板

旅游商城网站建设,交互网站模板,怎么导入文章到wordpress,简约大方网站参考资料: 【【零基础入门量子计算-第03讲】线性代数初步与复数】 来自b站up:溴锑锑跃迁 建议关注他的更多高质量文章:CSDN:【溴锑锑跃迁】 0. 前言 强烈建议搭配b站原视频进行观看,这只是我当时看的笔记&#xff0c…

参考资料:
【【零基础入门量子计算-第03讲】线性代数初步与复数】
来自b站up:溴锑锑跃迁
建议关注他的更多高质量文章:CSDN:【溴锑锑跃迁】

0. 前言

强烈建议搭配b站原视频进行观看,这只是我当时看的笔记,读懂这堂课的内容可能需要:线性代数(初等变换、列向量)、离散数学(群)、高等数学(极限等价无穷小部分)的知识储备

1. 向量的表示与运算

  1. 平面向量基本定理,可推广至三维或更多维度情况
    在这里插入图片描述

  2. 内积=点乘,得到标量
    在这里插入图片描述在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  3. 正交基——内积为零的两向量相互垂直,称为正交基底
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

2. 矩阵表示及其运算

在这里插入图片描述
在这里插入图片描述

  • 矩阵运算法则
    在这里插入图片描述在这里插入图片描述

  • 矩阵初等变换
    在这里插入图片描述

  • 逆矩阵(up的视频里面这里要是有如下文字提示可能会更好)
    设有矩阵 A A A和矩阵 B B B,有 A B = E AB=E AB=E(其中 E E E表示为单位矩阵,有的地方会用 I I I表示),则B为A的逆矩阵,即有 B = A − 1 B=A^{-1} B=A1
    )

对之前鸡兔同笼所列矩阵求解过程进行详细展示,关键是求逆矩阵左乘到右侧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

矩阵等式的理解方式
在这里插入图片描述
在这里插入图片描述

  • 理解方式一:(上图左)映射、矩阵变换,即从一个向量向另一个向量变换=矩阵
  • 理解方式二:(上图右)用坐标系本身代表的基底去组合成新的向量
    在这里插入图片描述
    在这里插入图片描述
    旋转矩阵:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

3. 群的简介(离散数学相关)

1. 群的定义

  • 考虑一个集合G并对其中元素定义/指定一种操作称为群乘法

  • 集合G指定群乘法后其中元素应当满足以下四条性质才能被称作

    1. 封闭性在这里插入图片描述

    2. 结合律在这里插入图片描述

    3. 单位元在这里插入图片描述

    4. 逆元素在这里插入图片描述

    在这里插入图片描述日是e的象形
    在这里插入图片描述
    在这里插入图片描述
    下面上三个实例
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    同态映射:先作用再乘法=先乘法再作用
    在这里插入图片描述
    即: e x ∗ e y = e x + y e^x*e^y=e^{x+y} exey=ex+y,即 f ( x ) + f ( y ) = f ( x + y ) f(x)+f(y)=f(x+y) f(x)+f(y)=f(x+y)

在这里插入图片描述
在这里插入图片描述

4. 复数简介

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
i轴和1轴的0处是同一个0,将他们连接起来构成一个平面!!!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
平面上表示
在这里插入图片描述
棣莫弗定理
在这里插入图片描述
在这里插入图片描述
此处请联想到上述的同态映射,即: e x ∗ e y = e x + y e^x*e^y=e^{x+y} exey=ex+y,即 f ( x ) + f ( y ) = f ( x + y ) f(x)+f(y)=f(x+y) f(x)+f(y)=f(x+y),下面是通过python对猜想进行证实
在这里插入图片描述
作图
在这里插入图片描述
即:
lim ⁡ n → ∞ ( 1 + 1 n ) n = e \begin{aligned}\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n&=e\end{aligned} nlim(1+n1)n=e
lim ⁡ n → ∞ ( 1 + a n ) n = [ lim ⁡ n → ∞ ( 1 + a n ) n a ] a ⟶ ⁡ t = n a [ lim ⁡ t → ∞ ( 1 + 1 t ) t ] a = e a \lim_{n\to\infty}\left(1+\frac{\color{red}{a}}n\right)^n=\left[\lim_{n\to\infty}\left(1+\frac{\color{red}{a}}n\right)^{\color{red}{\frac{n}{a}}}\right]^a\overset{t=\frac na}{\operatorname*{\longrightarrow}}\left[\lim_{t\to\infty}\left(1+\frac1t\right)^t\right]^a=e^{\color{red}{a}} nlim(1+na)n=[nlim(1+na)an]at=an[tlim(1+t1)t]a=ea
将a换成x,x也看作常数:
lim ⁡ n → ∞ ( 1 + x n ) n = e x \lim_{n\to\infty}\left(1+\frac xn\right)^n=e^x nlim(1+nx)n=ex
在这里插入图片描述

在这里插入图片描述
使用幂函数调整比例,从而张成新的函数
(看到这里我真的绷不住了,这个样子叫做零基础。。。还好我刚考过研,还记得些哈哈哈)
在这里插入图片描述
在这里插入图片描述
欧拉公式:
e i x = c o s x + i s i n x e^{ix}=cosx+isinx eix=cosx+isinx
从而有
z = r ( cos ⁡ θ + i s i n θ ) = r e i θ z=r(\cos\theta+isin\theta)=re^{i\theta} z=r(cosθ+isinθ)=reiθ
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

e L θ ν ⃗ ⇔ e^{L\theta}\vec{\nu}\Leftrightarrow eLθν v ⃗ \vec{v} v 逆时针转动角度 θ \theta θ

e i θ e^{i\theta} eiθ z ⇔ z\Leftrightarrow z z z z逆时针转动角度 θ \theta θ

在这里插入图片描述

http://www.yayakq.cn/news/155339/

相关文章:

  • 国内可以做的国外兼职网站庐江网站广告怎么做
  • 福州网站推广优化wordpress网站聊天插件
  • 沈阳市城市建设网站公司网站制作需要找广告公司么
  • 网站开发课题背景徐州手机模板建站
  • 网站长尾关键词优化手机登录wordpress
  • 制作网站的商家自助建站系统哪个好
  • 毕业设计代做网站都可信么汕尾市住房和城建设局网站
  • 网站seo入门基础教程书籍公司简介宣传
  • 百度统计网站速度诊断wordpress 中文版 docker
  • 怎么做销售网站vs和sql做购物网站
  • 为什么网站要改版网站推广如何做的
  • 苏州市网站建设公司网站一定要备案
  • 怎么查看网站的安全性淄博seo网络推广
  • 网站建设在线商城查域名的网站
  • 深圳seo网站设计电商网站平台
  • 网站推广软件ky99网站制作公司司
  • 做网站属于什么行业防疫优化措施
  • 企业网站制作规划卡片形式的网站
  • 女装网站建设规划书昆明网站建设首选公司
  • 直播网站建设需要什么wordpress 微信公众号
  • 网站用户反馈上海网站制作公司是什么
  • 外贸公司网站怎么设计更好青柠影院免费观看电视剧高清
  • 如何找网站推广西安网站建设哪家比较好
  • 东莞做网站找微客巴巴制作网站的软件主要有
  • 医疗网站建设好么排版网页
  • 做宣传片的网站微分销系统多少钱
  • 网站建设目标与期望wordpress 谷歌竞价
  • 佛山网站建设多少钱开发公司职责
  • 开发一个网站的成本电子商务网站建设及推广
  • 人才交流中心招聘网站建设方案网页设计步骤模板素材