当前位置: 首页 > news >正文

佛山网站优化好做淘宝的导购网站

佛山网站优化好,做淘宝的导购网站,网络推广专家,做app需要先做网站吗目录 排序函数 nlargest函数 nsmallest函数 sort_values函数 df.sort_values Series.sort_values 聚合函数 corr函数-相关性 min函数-最小值 max函数-最大值 mean函数-平均值 sum函数-求和 count函数-统计非空数据 std函数-标准偏差 quantile函数-分位数 排序函…

目录

排序函数

nlargest函数

nsmallest函数 

sort_values函数

df.sort_values

Series.sort_values

聚合函数

corr函数-相关性

min函数-最小值

max函数-最大值

mean函数-平均值

sum函数-求和

count函数-统计非空数据

std函数-标准偏差

quantile函数-分位数


排序函数

准备函数

# 加载csv数据, 返回df对象
import pandas as pddf = pd.read_csv('../data/b_LJdata.csv')
# print(df.head())
# 获取前10条数据
df2 = df.head(10)
df2

 

nlargest函数

通过 df.nlargest(n, 列名) 方法实现对指定列的值由大到小排序, 返回前n行数据
# df.nsmallest(n, '列名') # 根据指定列的值由小到大排列,返回n行数据
print(df2.nsmallest(5, '看房人数'))

nsmallest函数 

通过 df.nsmallest(n, 列名) 方法实现对指定列的值由小到大排序, 返回前n行数据
# df.nsmallest(n, '列名') # 根据指定列的值由小到大排列,返回n行数据
print(df2.nsmallest(5, '看房人数'))

sort_values函数

通过 df.sort_values(列名列表, ascending=) 方法根据指定列指定排序方式排序
ascending: True或False, 默认True->升序, 也可以接收布尔值列表, 每列指定排序方式

df.sort_values

  • df.sort_values函数可以按照指定的一列或多列的值进行排序

1) 按价格列的数值由小到大进行排序

print(df2.sort_values(['价格']))

2) 按价格列的数值由大到小进行排序

print(df2.sort_values(['价格'], ascending=False))

3)  先对看房人数列由小到大排序, 再对价格列由大到小排序

print(df2.sort_values(['看房人数', '价格'], ascending=[True, False]))

Series.sort_values

Series.sort_values 函数可以按照指定的一列或多列的值进行排序

1) 按价格列的数值由小到大进行排序


print(df2['价格'].sort_values())

2)  按价格列的数值由大到小进行排序

print(df2['价格'].sort_values(ascending=False))

聚合函数

corr函数-相关性

相关性得分越接近1, 代表正相关性越强; 越接近-1, 代表负相关性越强 自己和自己相关性为1 面积和价格呈现正相关, 面积越大, 价格越贵

df.corr()

  • “面积” 与 “面积” 的相关系数为 1.000000,这是必然的,因为一个变量与自身完全相关。

  • “面积” 与 “价格” 的相关系数为 0.710056,呈正相关关系。这表明在该数据集中,一般情况下,房屋面积越大,价格越高。但需要注意的是,相关系数为 0.710056 表明这种关系并非完全线性相关,可能存在其他因素影响价格。

  • “面积” 与 “看房人数” 的相关系数为 -0.114706,呈较弱的负相关关系。这意味着房屋面积的大小与看房人数之间的关系不是很密切,面积的增加不一定会导致看房人数的减少,反之亦然。

  • “价格” 与 “价格” 的相关系数为 1.000000,同理,一个变量与自身完全相关。

  • “价格” 与 “看房人数” 的相关系数为 0.019457,接近 0,表明价格与看房人数之间几乎没有线性关系。房屋价格的高低对看房人数的影响不明显。

  • “看房人数” 与 “看房人数” 的相关系数为 1.000000,自身完全相关。

min函数-最小值

print(df2.min())

max函数-最大值

print(df2.max())

mean函数-平均值

print(df2.mean())

sum函数-求和

print(df2.sum())
print('======================')
print(df2['看房人数'].sum())

count函数-统计非空数据

# 构造空值
df2.loc[0, '看房人数'] = None
print(df2.count())
print(df2['看房人数'].count())

std函数-标准偏差

一、方差

方差是用来衡量一组数据离散程度的统计量。具体计算方法是先求出这组数据的平均值,然后对于每个数据值,计算它与平均值的差值,再将这个差值进行平方,最后把所有数据值的差值平方加起来求平均。

方差越大,说明这组数据的波动越大,数据点相对平均值的分散程度越高;方差越小,说明数据相对更加集中在平均值附近。

二、标准差

标准差是方差的算术平方根。

即标准差

print(df2.std())

quantile函数-分位数

  • 分位数(Quantile),亦称分位点,常用的有中位数(即二分位数)、四分位数、百分位数等;那什么是分位数呢?我们以中位数为例:通过把一堆数字按大小排序后找出正中间的一个数字作为中位数,如果这一堆数字有偶数个,则中位数不唯一,通常取最中间的两个数值的平均数作为中位数,即二分位数。

  • quantile函数默认返回二分位数;可以通过传入参数来控制返回的四分位数,或其他分位数

print(df2.quantile())
print(df2['看房人数'].quantile())

print(df2.quantile([0.25, 0.5, 0.75]))
print('==============================')
print(df2['看房人数'].quantile([0.25, 0.5, 0.75]))

http://www.yayakq.cn/news/725715/

相关文章:

  • php网站开发防注入中国建设部
  • 可以上传图片的公司网站永久免费的连外网的软件
  • 网站建设模板怎么做住宅与建设部网站
  • 苏州市建设厅网站网站接入服务商是什么
  • 鹰潭网站建设公司wordpress如何导航网站模板下载
  • 丽水网站建设专业的公司欧美最火的社交网站怎么做
  • 蓝田县住房与城乡建设局网站企业网络推广方案的制定
  • 电影网站开发背景建筑工程网课心得体会
  • 网站开发选题依据建设网站提供资料的函
  • 网站背景素材雄县做网站的
  • wordpress福利网站源码电子商务策划书模板
  • 做网站一天传奇新开服网站
  • 建设监理网站东莞网站推广
  • 网站做app的软件叫什么个人网站做哪些流程
  • 早期做网站 如何推广easyui 做的网站
  • dt高端网站设计贵阳网站建设优化
  • 企业网站怎么搭建网站建设证有
  • 无锡网站建设 君通科技陕西安康网站建设
  • 天津h5模板建站无锡网站制作哪家正规
  • 空间数据云网站ico交易网站怎么做
  • 网站已有备案了 现在换空间商还用备案么世界经理人网站手机版
  • 免费vip网站推广做杂志一般在哪个网站找感觉
  • 新建网站网络空间广西桂林师范大学
  • 南京网站设计制作排名迅捷流程图在线制作网站
  • 用wordpress建立学校网站吗wordpress自定义模板
  • 芯火信息做网站怎么样pinterest app下载
  • 辽宁网站建设专业学校网站网页设计在哪找
  • 济南天桥区做网站的53建筑网官网
  • 万网官方网站在线制作表情包生成器软件
  • 网站升级改版需要几天如何登录ftp网站