当前位置: 首页 > news >正文

开网站怎么开广州新际网络科技有限公司

开网站怎么开,广州新际网络科技有限公司,激励案例网站制作,网站建设相关知识文章目录 Structured Streaming入门案例 一、Scala代码如下 二、Java 代码如下 三、以上代码注意点如下 Structured Streaming入门案例 我们使用Structured Streaming来监控socket数据统计WordCount。这里我们使用Spark版本为3.4.3版本,首先在Maven pom文件中导…

文章目录

Structured Streaming入门案例

一、Scala代码如下

二、Java 代码如下

三、以上代码注意点如下


Structured Streaming入门案例

我们使用Structured Streaming来监控socket数据统计WordCount。这里我们使用Spark版本为3.4.3版本,首先在Maven pom文件中导入以下依赖:

 <!-- 配置以下可以解决 在jdk1.8环境下打包时报错 “-source 1.5 中不支持 lambda 表达式” --><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><spark.version>3.4.3</spark.version></properties><dependencies><!-- Spark-core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>${spark.version}</version></dependency><!-- SparkSQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>${spark.version}</version></dependency><!-- SparkSQL  ON  Hive--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-hive_2.12</artifactId><version>${spark.version}</version></dependency><!--mysql依赖的jar包--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.47</version></dependency><!--SparkStreaming--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>${spark.version}</version></dependency><!-- Kafka 0.10+ Source For Structured Streaming--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql-kafka-0-10_2.12</artifactId><version>${spark.version}</version></dependency><!-- 向kafka 生产数据需要包 --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Scala 包--><dependency><groupId>org.scala-lang</groupId><artifactId>scala-library</artifactId><version>2.12.15</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-compiler</artifactId><version>2.12.15</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-reflect</artifactId><version>2.12.15</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.12</version></dependency><dependency><groupId>com.google.collections</groupId><artifactId>google-collections</artifactId><version>1.0</version></dependency></dependencies>

一、Scala代码如下

package com.lanson.structuredStreaming/***  Structured Streaming 实时读取Socket数据*/import org.apache.spark.sql.streaming.StreamingQuery
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}/*** Structured Streaming 读取Socket数据*/
object SSReadSocketData {def main(args: Array[String]): Unit = {//1.创建SparkSession对象val spark: SparkSession = SparkSession.builder().master("local").appName("StructuredSocketWordCount")//默认200个并行度,由于源头数据量少,可以设置少一些并行度.config("spark.sql.shuffle.partitions",1).getOrCreate()import spark.implicits._spark.sparkContext.setLogLevel("Error")//2.读取Socket中的每行数据,生成DataFrame默认列名为"value"val lines: DataFrame = spark.readStream.format("socket").option("host", "node3").option("port", 9999).load()//3.将每行数据切分成单词,首先通过as[String]转换成Dataset操作val words: Dataset[String] = lines.as[String].flatMap(line=>{line.split(" ")})//4.按照单词分组,统计个数,自动多一个列countval wordCounts: DataFrame = words.groupBy("value").count()//5.启动流并向控制台打印结果val query: StreamingQuery = wordCounts.writeStream//更新模式设置为complete.outputMode("complete").format("console").start()query.awaitTermination()}}

 

二、Java 代码如下

package com.lanson.structuredStreaming;import java.util.Arrays;
import java.util.Iterator;
import java.util.concurrent.TimeoutException;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.StreamingQuery;
import org.apache.spark.sql.streaming.StreamingQueryException;public class SSReadSocketData01 {public static void main(String[] args) throws StreamingQueryException, TimeoutException {SparkSession spark = SparkSession.builder().master("local").appName("SSReadSocketData01").config("spark.sql.shuffle.partitions", 1).getOrCreate();spark.sparkContext().setLogLevel("Error");Dataset<Row> lines = spark.readStream().format("socket").option("host", "node3").option("port", 9999).load();Dataset<String> words = lines.as(Encoders.STRING()).flatMap(new FlatMapFunction<String, String>() {@Overridepublic Iterator<String> call(String line) throws Exception {return Arrays.asList(line.split(" ")).iterator();}}, Encoders.STRING());Dataset<Row> wordCounts = words.groupBy("value").count();StreamingQuery query = wordCounts.writeStream().outputMode("complete").format("console").start();query.awaitTermination();}
}

 

以上代码编写完成之后,在node3节点执行“nc -lk 9999”启动socket服务器,然后启动代码,向socket中输入以下数据:

第一次输入:a b c
第二次输入:d a c
第三次输入:a b c

可以看到控制台打印如下结果:

-------------------------------------------
Batch: 1
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
|    c|    1|
|    b|    1|
|    a|    1|
+-----+-----+-------------------------------------------
Batch: 2
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
|    d|    1|
|    c|    2|
|    b|    1|
|    a|    2|
+-----+-----+-------------------------------------------
Batch: 3
-------------------------------------------
+-----+-----+
|value|count|
+-----+-----+
|    d|    1|
|    c|    3|
|    b|    2|
|    a|    3|
+-----+-----+

三、以上代码注意点如下

  • SparkSQL 默认并行度为200,这里由于数据量少,可以将并行度通过参数“spark.sql.shuffle.partitions”设置少一些。
  • StructuredStreaming读取过来数据默认是DataFrame,默认有“value”名称的列
  • 对获取的DataFrame需要通过as[String]转换成Dataset进行操作
  • 结果输出时的OutputMode有三种输出模式:Complete Mode、Append Mode、Update Mode。

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
http://www.yayakq.cn/news/233994/

相关文章:

  • 有哪些看设计做品的网站蛋糕网站源码
  • 北京做网站的价格淘宝u站怎么做网站的
  • 建网站可以铺货网址之家哪个好
  • 乌镇网站建设标书网站空间和域名绑定
  • 网站建设推广培训亚马逊雨林简介
  • 帝国cms关闭网站wordpress有客户端吗
  • 成都微信端网站建网站与网站做外链好吗
  • 做一个网站能卖多少钱站长资源平台
  • 招远网站建设哪家好泰安网站建设制作电话号码
  • 厦门网站制作网站建设收费wordpress菜单手机显示下拉
  • 企业网站建设文案不适合学编程的人
  • 开发者门户网站是什么意思野狼seo团队
  • 网站建设 万网wordpress 换中文
  • 企业网站备案不通过做一个公众号多少钱
  • 网站逻辑结构建筑工程公司取名
  • 信用门户网站建设方案深圳住房建设局网站
  • 深圳网站推广公司网站集群建设
  • 做免费导航网站cute模板wordpress
  • 莱芜都市网人才厦门seo关键词
  • 有哪些做的好的网站网页设计模板素材图片简单
  • 美的集团网站建设方案书全网营销型网站新闻
  • 网站开发毕设设计论文怎样做淘宝的导购网站推广
  • 电脑维修 做网站网站服务器修改登录密码
  • 网站建设找哪一家比较好wordpress图片加水印
  • 网站原型怎么做微信网站推广
  • 天津做网站外包公司有哪些wordpress VIP系统
  • 网站建设相关资料天津几个区分别是
  • 旅游酒店网站建设佛山专业网站建设报价
  • 做期货在哪个网站查资料信息网站建设汇报
  • 龙华专业做网站不是营销型的网站