当前位置: 首页 > news >正文

网站建设对企业的重要性简易网站建设维护

网站建设对企业的重要性,简易网站建设维护,对网站建设功能的情况说明,店铺设计装修图片前提 这篇博客是对最近一个有关无人机拍摄图像项目中所学到的新知识的一个总结,比较杂乱,没有固定的写作顺序。 无人机坐标系旋转问题 上图是无人机坐标系,绕x轴是翻滚(Roll),绕y轴是俯仰(Pitch),绕z轴是偏航(Yaw)。…

前提

这篇博客是对最近一个有关无人机拍摄图像项目中所学到的新知识的一个总结,比较杂乱,没有固定的写作顺序。

无人机坐标系旋转问题

在这里插入图片描述
上图是无人机坐标系,绕x轴是翻滚(Roll),绕y轴是俯仰(Pitch),绕z轴是偏航(Yaw)。在初始位置,无人机坐标系和世界坐标系是对齐的,在坐标系中存在一个原始点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),那么当无人机翻滚、俯仰、偏航后,此时的原始点被转动到了哪个位置处?
首先是绕x轴的翻滚,翻滚角为u,旋转矩阵为:
R x ( u ) = [ 1 0 0 0 c o s ( u ) − s i n ( u ) 0 s i n ( u ) c o s ( u ) ] R_x(u)=\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(u) & -sin(u) \\ 0 & sin(u) & cos(u) \end{bmatrix} Rx(u)= 1000cos(u)sin(u)0sin(u)cos(u)
可以看到,这个旋转矩阵和三维空间中某一点绕x轴旋转的旋转矩阵一样。
旋转后的坐标则为:
[ x 1 y 1 z 1 ] = R x ( u ) [ x 0 y 0 z 0 ] \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}= R_x(u)\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} x1y1z1 =Rx(u) x0y0z0
接下来是绕y轴的俯仰,俯仰角为v,旋转矩阵为:
R y ( v ) = [ c o s ( v ) 0 s i n ( v ) 0 1 0 − s i n ( v ) 0 c o s ( v ) ] R_y(v)=\begin{bmatrix} cos(v) & 0 & sin(v) \\ 0 & 1 & 0 \\ -sin(v) & 0 & cos(v) \end{bmatrix} Ry(v)= cos(v)0sin(v)010sin(v)0cos(v)
可以看到,这个旋转矩阵和三维空间中某一点绕y轴旋转的旋转矩阵一样。
旋转后的坐标则为:
[ x 2 y 2 z 2 ] = R y ( u ) [ x 1 y 1 z 1 ] \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}= R_y(u)\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} x2y2z2 =Ry(u) x1y1z1

接下来是绕z轴的偏航,偏航角为w,旋转矩阵为:
R z ( v ) = [ c o s ( w ) − s i n ( w ) 0 s i n ( w ) c o s ( w ) 0 0 0 1 ] R_z(v)=\begin{bmatrix} cos(w) & -sin(w) & 0 \\ sin(w) & cos(w) & 0 \\ 0 & 0 & 1 \end{bmatrix} Rz(v)= cos(w)sin(w)0sin(w)cos(w)0001
可以看到,这个旋转矩阵和三维空间中某一点绕z轴旋转的旋转矩阵一样。
旋转后的坐标则为:
[ x 3 y 3 z 3 ] = R z ( u ) [ x 2 y 2 z 2 ] \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix}= R_z(u)\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} x3y3z3 =Rz(u) x2y2z2
将三个旋转矩阵结合起来就就是:
[ x 3 y 3 z 3 ] = R z ( w ) × R y ( v ) × R x ( u ) [ x 0 y 0 z 0 ] \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix}= R_z(w)\times R_y(v)\times R_x(u)\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} x3y3z3 =Rz(w)×Ry(v)×Rx(u) x0y0z0
可以看到这里面有很重要的一点就是: R z ( w ) 、 R y ( v ) 、 R x ( u ) R_z(w)、R_y(v)、R_x(u) Rz(w)Ry(v)Rx(u)相乘时的顺序不能发生改变,一旦发生改变(矩阵相乘没有交换律),则结果也会发生变化。
对上面进行总结,整体上如下图所示:
在这里插入图片描述
已知在无人机坐标系下的一点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),求无人机在翻滚u度,俯仰v度,偏航w度后的点坐标 ( x 3 , y 3 , z 3 ) (x_3,y_3,z_3) (x3,y3,z3)。计算公式如上所示。

图像相关问题

视场角

一般来说,相机的视场角(FOV)有三个,H FOV(水平视场角)、V FOV(垂直视场角),D FOV(对角视场角),如下图所示,一目了然。
在这里插入图片描述

图像的单应性变换

单应性的一个不严谨定义是:用无镜头畸变的相机从不同位置拍摄同一平面物体的图像之间存在单应性,可以用透视变换表示。
在这里插入图片描述
也就是说,给Right view的图像上的点经过透视变换可以变到left view图像上对应位置,透视变换也就是一个矩阵,我们称之为单应性矩阵。
这里不对单应性矩阵进行详细介绍,只是说求解单应性矩阵有8个参数,因此需要四组对应点。
一种常见的方法是寻找两张图像中的相似特征点,然后用来求解单应性矩阵,参考此链接中有相关代码,以及对单应性矩阵的具体介绍。

findHomography函数和getPerspectiveTransform函数

两个函数都可以用来求单应性矩阵,结果一样。但getPerspectiveTransform只会拿四组点去计算,findHomography会拿多组点(大于等于4组)点去计算。

参考链接

  1. https://danceswithcode.net/engineeringnotes/rotations_in_3d/rotations_in_3d_part1.html
  2. https://www.sohu.com/a/657116799_121116014
  3. https://zhuanlan.zhihu.com/p/74597564
  4. https://blog.csdn.net/Sunshine_in_Moon/article/details/45478351
http://www.yayakq.cn/news/321544/

相关文章:

  • 公司建设网站的分录省网站建设
  • 阿里巴巴网站推广方式微信代运营加盟
  • 建站宝盒 源码ftp建网站
  • 平面设计师个人网站如何在本地搭建wordpress
  • 用html5做京东网站代码专业关键词排名优化软件
  • 电子商务网站的建设心得建设银行 访问的网站出错
  • 彩票网站开发 极云广州关键词排名推广
  • 浙江坤宇建设有限公司网站网络营销整合营销
  • 有没有免费的网站空间公司做公司网站
  • 想在网站卖房怎么做仿牌网站服务器
  • asp网站开发 基础网站建设毕业答辩问题
  • 用html做的网站步骤网站设计ai
  • 支付宝也做网站吗自己做文字壁纸的网站
  • golang 网站开发 开源网站建设预算申请如何写
  • 网站建设的技术阶段网页微信会留下聊天记录吗
  • 网站建设合同封皮wordpress显示文章id
  • 做网站的主流软件智能软件开发方向怎么样
  • 如何做织梦论坛类的网站吉林省四平市
  • 上海网站设计案例wordpress高亮代码转义
  • 宁波网站设计方案网站开发 英文文章
  • 广州致格广告有限公司网站wordpress 删除的模板
  • 政务网站无障碍建设企业做个网站多少钱
  • 江苏建设厅网站首页百度推广在哪里能看到
  • 分类网站 模板桂林 网站建设
  • 广州外贸网站效果怎么把自己的网站放到百度搜索上
  • 关于网站建设的图片七牛做网站
  • 免费查看招标信息的网站网站开发团队 人员
  • 重庆石柱网站设计公司网站预约挂号怎么做
  • 天猫网站左侧导航用js怎么做三一国际网站设计
  • 网站开发工程师特点搞一个卖东西的网站怎么做