当前位置: 首页 > news >正文

网站设计 联系优化seo系统

网站设计 联系,优化seo系统,海外注册域名的网站,做网站的素材和步骤基于AI相关的技术来对一些重复性的但是又比较重要的工作来做智能化助力是一个非常有潜力的场景,关于这方面的项目开发实践在我之前的文章中也有不少的实践,感兴趣的话可以自行移步阅读即可:《AI助力智能安检,基于目标检测模型实现…

基于AI相关的技术来对一些重复性的但是又比较重要的工作来做智能化助力是一个非常有潜力的场景,关于这方面的项目开发实践在我之前的文章中也有不少的实践,感兴趣的话可以自行移步阅读即可:
《AI助力智能安检,基于目标检测模型实现X光安检图像智能检测分析》

《基于轻量级YOLO模型的X光安检场景下危险物品检测系统》

智能安检相关的任务大都是基于X光数据进行的,基于X光相关的其他类型的项目还有一些,感兴趣的话自行阅读即可:

《基于YOLOv5开发构建手部X光骨骼检测识别分析系统》

《基于轻量级yolov5的手部X光骨骼实例分割检测识别分析系统》

本文的主要落脚点在X光智能安检,前面虽然也有这块的项目实践,但是大都是基于行李的安检图像数据进行的,这里的主要研究对象是人,也就是说核心的目的是行人携带的或者是夹带的各种可能存在危险的物品进行智能化的检测识别,首先看下效果图:

 接下来简单看下数据集:

 可以看到:实验设定所用到的数据集来源于真实场景单人拍摄的数据。

考虑到实际项目使用过程中所需要的精度和时效性问题,这里模型的主要选型考虑再n、s和m这三款中进行选择,希望达到的是在精度达到指标的情况下尽可能更加轻量化。

整套项目基于v7.0代码开发实现,这里时间比较充裕,所以n、s和m三款不同参数量级的模型我都开发实现了。接下来我们依次看下:
【yolov5n】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 13  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

【yolov5s】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 13  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

【yolov5m】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 13  # number of classes
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

训练完成后,为了直观对比分析不同量级模型的性能差异,这里对其进行整体对比可视化,如下所示:
【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。


【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。


【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

 【loss对比曲线】

整体来看不难发现:n系列模型效果最低,m系列模型效果最优,s系列模型兼顾了精度和速度,在实测分析场景下最终选用的也是s系列的模型,后续还可以对其进行进一步的剪枝处理达到进一步精简参数量的目的。

 这里我们以最终选定的yolov5s模型为例,看下对应模型的结果详情:

【混淆矩阵】

 【F1值】

 【精确率曲线】

 【PR曲线】

 【召回率曲线】

 【整体训练过程可视化】

 【Batch计算实例】

 因为我这里资源限制,所以设定的训练使用的batch-size都是比较小的。

http://www.yayakq.cn/news/77745/

相关文章:

  • 网站建设公司小程序开发阳江商城网站开发设计
  • wordpress 视频图片网站网站建设"淘宝网" 在颜色选取和搭配方面有哪些值得学习的地方.
  • 怎么用网吧电脑做网站服务器网站图片上的水印怎么做
  • 网站大致内容传统建筑网站
  • 互联网门户网站建设管理 总结益阳做网站的公司
  • 网站首页不收录厦门建筑网
  • 深圳做网站最好的公司丽水网站开发公司
  • 小网站建设公司排名可以做问卷的网站
  • 南山医院网站建设中国建设网上银行登录
  • 企业门户网站建设 验收潜江资讯网58同城
  • 网站建设找泉州效率网络手机网站 空间
  • 微信小程序一键生成免费willfast优化工具下载
  • 云南微网站建设网站如何推广运营
  • 在哪个网站注册公司公司建立自己的网站有什么好处
  • 微信网站开发框架wordpress 文章标签
  • 如何评价网站是否做的好坏wordpress中文建站
  • 购买游戏软件做网站潜江市建设工程合同备案网站
  • 30天网站建设 视频教程网站排名怎样做有效
  • 罗湖区网站建设wordpress sticky
  • 专业网站优化seo网站建设税率是多少
  • 济南智能网站建设服务wordpress 正版插件
  • 瑞安建设公司网站如何看一个网站是否做推广
  • 网站怎么放在服务器上大网站cn域名
  • 建站排行榜网站建设一般需要多少费用
  • 东莞外贸网站设计一个不懂技术的人如何做网站
  • 网站权重排名wordpress付款后可见
  • app介绍网站模板免费下载响应式网页设计的理念
  • 介绍一学一做视频网站吗库存网站建设公司
  • 设计招聘网站企业网站托管平台有哪些
  • 作弊网站网站制作公司有没有版权