当前位置: 首页 > news >正文

一级做A网站展馆设计流程

一级做A网站,展馆设计流程,成都谷歌seo,建设山东公司网站一. 初识算法 1.1 什么是算法? 在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算 不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间…

一. 初识算法

1.1 什么是算法?

在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算

不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间内,产生一些值作为输出。

1.2 什么是数据结构?

在计算机科学领域,数据结构是一种数据组织、管理和存储格式,通常被选择用来高效访问数据

数据结构是一种存储和组织数据的方式,旨在便于访问和修改

1.3 衡量算法好坏

一般从以下维度来评估算法的优劣:正确性、可读性、健壮性(对不合理输入的反应能力和处理能力)。
时间复杂度(time complexity):估算程序指令的执行次数(执行时间)。
空间复杂度(space complexity):估算所需占用的存储空间。

1.3.1 时间复杂度

常见的时间复杂度从快到慢:

常数复杂度                                 O(1)

对数复杂度                                 O(logn)

线性时间复杂度                          O(n)

线性对数复杂度                          O(nlogn)

平方                                            O(n^{2})

立方                                            O(n^{3})

指数                                            O(2^{n})

阶乘                                            O(n!)

1.3.2 空间复杂度

空间复杂度就是算法需要多少内存,占用了多少空间

常用的空间复杂度有O(1)、O(n)、O(n^{2})

二、二分查找

二分查找算法也称折半查找,是一种非常高效的工作于有序数组的查找算法。

2.1 二分查找基础版

	/*** @description: 二分查找基础版* @author: 憨憨浩浩* @date: 2023/12/11 21:54* @param: [a, target]* @return: int**/public static int binarySearchBasic(int[] a, int target) {// 定义左侧指针int i = 0;// 定义右侧指针int j = a.length - 1;// 当 i > j 时退出循环while (i <= j){// 定义中间指针int m = (i + j) / 2;if (a[m] > target){     // 目标值在左边j = m - 1;}else if (a[m] < target){       // 目标值在右边i = m + 1;}else {     // 找到目标值返回对应索引return m;}}return -1;      // 找不到目标值返回-1}

(i + j) / 2 有没有问题?

有问题,当数组长度足够长是会发生问题;

	@Testpublic void Test01(){int i = Integer.MAX_VALUE / 2;int j = Integer.MAX_VALUE;int m = (i + j) / 2;System.out.println(m);		// -536870913}

解决方案:

	@Testpublic void Test02(){int i = Integer.MAX_VALUE / 2;int j = Integer.MAX_VALUE;int m = (i + j) >>> 2;System.out.println(m);		// 805306367}

2.2 二分查找改变版

另一种写法

	/*** @description: 二分查找改变版* @author: 憨憨浩浩* @date: 2023/12/11 22:10* @param: [a, target]* @return: int**/public static int binarySearchAlternative(int[] a,int target){// 定义左侧指针int i = 0;// 定义右侧指针int j = a.length;// 当 i = j 时退出循环while (i < j){// 定义中间指针int m = (i + j) /2;if (a[m] > target){     // 目标值在左边j = m;} else if (a[m] < target) {     // 目标值在右边i = m + 1;}else {     // 找到目标值返回对应索引return m;}}return -1;      // 找不到目标值返回-1}

2.3 二分查找性能

2.4 二分查找平衡版

	/*** @description: 二分查找平衡版* @author: 憨憨浩浩* @date: 2023/12/13 13:46* @param: [a, target]* @return: int**/public static int binarySearchBalance(int[] a,int target){// 定义左侧指针int i = 0;// 定义右侧指针int j = a.length;// 当 i + 1 > j 时退出循环while (1 < j - i) {// 定义中间指针int m = (i + j) >>> 1;if (target < a[m]) {     // 目标值在左边j = m;} else {i = m;}}// 查到返回i,查不到返回-1return (a[i] == target) ? i : -1;}

2.5 二分查找 Java 版

Java8源码:

public static int binarySearch(int[] a, int key) {return binarySearch0(a, 0, a.length, key);}private static int binarySearch0(int[] a, int fromIndex, int toIndex, int key) {int low = fromIndex;int high = toIndex - 1;while (low <= high) {int mid = (low + high) >>> 1;int midVal = a[mid];if (midVal < key)low = mid + 1;else if (midVal > key)high = mid - 1;elsereturn mid; // key found}return -(low + 1);  // key not found.}

2.6 Leftmost 与 Rightmost

	/*** @description: 二分查找返回左侧的索引值* @author: 憨憨浩浩* @date: 2023/12/15 20:21* @param: [a, target]* @return: int**/public static int binarySearchLeftmost1(int[] a,int target){int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m; // 记录候选位置j = m - 1;     // 继续向左}}return candidate;}

如果希望返回的是最右侧元素

	/*** @description: 二分查找返回最右侧值的索引* @author: 憨憨浩浩* @date: 2023/12/15 20:23* @param: [a, target]* @return: int**/public static int binarySearchRightmost1(int[] a,int target){int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m; // 记录候选位置i = m + 1;	   // 继续向右}}return candidate;}

应用

对于 Leftmost 与 Rightmost,可以返回一个比 -1 更有用的值

Leftmost 改为

public static int binarySearchLeftmost(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target <= a[m]) {j = m - 1;} else {i = m + 1;}}return i; 
}

Rightmost 改为

public static int binarySearchRightmost(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else {i = m + 1;}}return i - 1;
}

大于等于中间值,都要向右找

几个名词

 

http://www.yayakq.cn/news/282378/

相关文章:

  • 常用的软件开发文档莱芜网站优化招聘网
  • 一站式做网站多少钱福州网站开发系列
  • 最全做暖暖网站wordpress美化插件大全
  • 阜宁网站制作公司报价石家庄教育平台网站建设
  • 怎样在网站上做友情链接天元建设集团有限公司单位性质
  • 视频网站seo实战肃宁县网站建设
  • 茶文化网站制作网站介绍经过下拉怎么做
  • 西安网站开发建郑州市做网站
  • 北京市工程建设信息交易网站哪些网站做外贸效果好
  • 邓州网站优化品牌策划案模板
  • 做网站的素材哪里找的广西新闻最新消息今天
  • 平台型网站建设预算表网站seo策略
  • 涉县专业做网站单页面网站如何seo
  • 网站制作 牛商网网站正在建设中中文模板
  • 南阳网站建设培训h5开发环境
  • 唐山网站制作方案长沙手机网站首页设计公司
  • 公司做网站要注意什么别墅装修设计图片大全 效果图
  • 做打鱼网站犯法不成熟的国产crm系统
  • 网站做404网站建设维护杭州
  • 易销云建站公司国家信息企业公示系统查询
  • 二维码怎么做网站网站访问量
  • 网站建设系统设计产品软文范例1000字
  • 企业网站模板下载哪家好徐州网站建设优化宣传
  • 公司建一个网站吗贵阳好的网站建设公司
  • 襄阳做网站排行榜wordpress二维码插件付费
  • 做网站的需求实验室网站建设
  • 智能模板网站建设收费骑行网站模板
  • form e哪个网站做商城网站不易优化
  • 网站建设业务方法昆明网站建设服务至上
  • 网站域名注册价格手机设计房子的软件3d下载