当前位置: 首页 > news >正文

大连网站建设免费杭州网站建设哪个好

大连网站建设免费,杭州网站建设哪个好,绍兴做网站公司,wordpress采集电影分类目录:《自然语言处理从入门到应用》总目录 本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商,如:OpenAI、Cohere、Hugging Face等,这个类旨在为所有这些提供一个标准接口。 …

分类目录:《自然语言处理从入门到应用》总目录


本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商,如:OpenAI、Cohere、Hugging Face等,这个类旨在为所有这些提供一个标准接口。

嵌入创建文本的向量表示会很有用,因为这意味着我们可以在向量空间中表示文本,并执行类似语义搜索这样的操作。LangChain中的基本Embedding类公开两种方法:

  • embed_documents:适用于多个文档
  • embed_query:适用于单个文档

将这两种方法作为两种不同的方法的另一个原因是一些嵌入提供商对于需要搜索的文档和查询(搜索查询本身)具有不同的嵌入方法,下面是文本嵌入的集成示例:

Aleph Alpha

使用Aleph Alpha的语义嵌入有两种可能的方法。如果我们有不同结构的文本(例如文档和查询),则我们使用非对称嵌入。相反,对于具有可比结构的文本,则建议使用对称嵌入的方法:

非对称
from langchain.embeddings import AlephAlphaAsymmetricSemanticEmbedding
document = "This is a content of the document"
query = "What is the content of the document?"
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
对称
from langchain.embeddings import AlephAlphaSymmetricSemanticEmbedding
text = "This is a test text"
embeddings = AlephAlphaSymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)

Amazon Bedrock

Amazon Bedrock是一个完全托管的服务,通过API提供了来自领先AI初创公司和亚马逊的FMs,因此您可以从广泛的FMs中选择最适合您的用例的模型。

%pip install boto3
from langchain.embeddings import BedrockEmbeddingsembeddings = BedrockEmbeddings(credentials_profile_name="bedrock-admin")
embeddings.embed_query("This is a content of the document")
embeddings.embed_documents(["This is a content of the document"])

Azure OpenAI

我们加载OpenAI Embedding类,并设置环境变量以指示使用Azure端点。

# 设置用于 OpenAI 包的环境变量,以指示使用 Azure 端点
import osos.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
from langchain.embeddings import OpenAIEmbeddingsembeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

Cohere

我们加载Cohere Embedding类:

from langchain.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

DashScope

我们加载DashScope嵌入类:

from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

DashScope

我们加载DashScope嵌入类:

from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

Elasticsearch

使用Elasticsearch中托管的嵌入模型生成嵌入的操作步骤。通过下面的方式,可以很容易地实例化ElasticsearchEmbeddings类。如果我们使用的是Elastic Cloud,则可以使用from_credentials构造函数,如果我们使用的是Elasticsearch集群,则可以使用from_es_connection构造函数:

!pip -q install elasticsearch langchain
import elasticsearch
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
# 定义模型 ID
model_id = 'your_model_id'

如果我们希望使用from_credentials进行测试,那么我们需要Elastic Cloud的cloud_id:

# 使用凭据实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_credentials(model_id,es_cloud_id='your_cloud_id', es_user='your_user', es_password='your_password'
)# 为多个文档创建嵌入
documents = ['This is an example document.', 'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):print(f"文档 {i+1} 的嵌入:{embedding}")# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

同时,我们可以使用现有的Elasticsearch客户端连接进行测试,这可用于任何Elasticsearch部署:

# 创建 Elasticsearch 连接
es_connection = Elasticsearch(hosts=['https://es_cluster_url:port'], basic_auth=('user', 'password')
)
# 使用 es_connection 实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_es_connection(model_id,es_connection,
)
# 为多个文档创建嵌入
documents = ['This is an example document.', 'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):print(f"文档 {i+1} 的嵌入:{embedding}")# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

http://www.yayakq.cn/news/165029/

相关文章:

  • 如何建立免费公司网站公司车辆管理系统软件
  • 南京seo网站建设费用百度链接地址
  • 国外做网站推广steam怎么注册域名
  • 重庆网站建设夹夹虫负责有什么好的做家常菜的网站
  • 建设主题网站的顺序是什么长治做百度网站一年多少钱
  • 毕业设计做系统和网站有什么区别传统企业公司网站优化案例
  • 游戏企业用什么程序做网站电商网站要素
  • 网站建设所用系统如何做亚马逊跨境电商平台
  • 四网一体网站建设方案百度网盘网页版登录入口
  • 寿光市建设局网站企业网站建设及推广
  • 50m专线做视频网站最好玩的网游排名前十
  • 网站推广排名平台网站模板 自适应
  • phpcms电影网站开发个人博客网站制作论文
  • 郑州网站建设找智巢上海暂停娱乐场所营业通知
  • 企业网站开发摘要广东网站建设方便
  • 烟台网站搜索优化点击出字插件wordpress
  • 2017如何免费制作网站凡科手机网站建设开发
  • 物流企业网站建设与管理规划书做个网站的价格
  • 商业网站排名企健网网址
  • 合肥房产网站建设西安高端网站制作
  • 网站顶部怎么做新浪链接智能产品开发
  • 自己设计一个网站辽宁自助网站建设价格
  • 贵阳地铁建设网站云南网站开发费用
  • 太白 网站建设seo网络营销工程师
  • 做竞价网站需要什么样的空间齐装网
  • 一级域名 二级域名 目录网站推广网站备案是一年一次吗
  • 免费做qq互赞网站专业网站构建
  • 常州网站建设公司教程四川林峰脉建设工程有限公司网站
  • 新手学做网站编程网络培训学习心得体会
  • 百度大全网站网站注册地址查询