当前位置: 首页 > news >正文

太和县建设局网站公司优化是什么意思?

太和县建设局网站,公司优化是什么意思?,外贸谷歌推广,购物平台怎么赚钱数据分析中的预处理步骤是数据分析流程中的重要环节,它的目的是清洗、转换和整理原始数据,以便后续的分析能够准确、有效。预处理通常包括以下几个关键步骤: 数据收集:确定数据来源,可能是数据库、文件、API或网络抓取…

数据分析中的预处理步骤是数据分析流程中的重要环节,它的目的是清洗、转换和整理原始数据,以便后续的分析能够准确、有效。预处理通常包括以下几个关键步骤:

  1. 数据收集:确定数据来源,可能是数据库、文件、API或网络抓取,确保数据的质量和完整性。

  2. 数据清洗(Data Cleaning)

    • 缺失值处理:填充、删除或估算缺失的数据。
    • 异常值检测:识别并可能修复或排除不合理的数值。
    • 重复值检查:删除重复记录,保持数据唯一性。
    • 数据类型转换:将数据调整为正确的格式,如日期时间格式化、数值类型等。
  3. 数据集成(Data Integration):如果数据来自多个源,需要合并和统一数据格式。

  4. 数据转换(Data Transformation)

    • 标准化或归一化:使数据具有可比性,例如Z-score标准化或Min-Max缩放。
    • 编码分类变量:如One-Hot Encoding或Label Encoding。
    • 特征工程:创建新的特征,比如从文本中提取关键词或计算衍生指标。
  5. 数据降维(Dimensionality Reduction):如果数据维度过高,可能使用PCA(主成分分析)或LDA(潜在狄利克雷分配)等方法减少冗余。

  6. 数据划分(Data Splitting):将数据集分为训练集、验证集和测试集,用于模型的训练和评估。

  7. 数据采样(Sampling):对于大规模数据,可能需要进行随机抽样或分层抽样以平衡类别分布。

  8. 数据可视化(Exploratory Data Analysis, EDA):初步了解数据的分布、关联性和模式。

完成这些预处理步骤后,数据就准备好了供机器学习模型进行训练和预测。预处理的质量直接影响到分析结果的可靠性。


接下来进行一个小小案例讲解:

  • 1、缺失值处理
#1、
#读取数据
import pandas as pd
data = pd.read_excel('学生信息表.xlsx')
#查看属性缺失值情况
data.info()
data.isnull()
#删除“籍贯”为空的行
data = data.dropna(subset=["籍贯"])
#使用平均年龄填充“年龄”属性为空的数据
data['年龄'].fillna(data['年龄'].mean(),inplace=True)
#使用性别的众数填充“性别”属性为空的列
data.fillna({'性别':data['性别'].mode()[0]},inplace=True)
  • (1)读取“学生信息表.xlsx”。
  • (2)使用info()方法查看每一属性的缺失值情况。
  • (3)删除“籍贯”属性为空的行。
  • (4)使用平均年龄填充“年龄”属性为空的数据。
  • (5)使用性别的众数填充“性别”属性为空的列。
  • 2、非数值数据处理
  • #2、
    #将“性别”属性设置为哑变量,删除“性别_女”,并将“性别_男”改为“性别”
    data = pd.get_dummies(data,columns=['性别'])
    data = data.drop(columns = '性别_女')
    data = data.rename(columns={'性别_男':'性别'})
    #对“籍贯”属性进行编号处理
    from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    label = le.fit_transform(data['籍贯'])
    data['籍贯'] = label
  • (1)将“性别”属性设置为哑变量,删除“性别_女”,并将“性别_男”改为“性别”。
  • (1为性别男,0为性别女)
  • (2)对“籍贯”属性进行编号处理。
  • (0为云南;1为江苏;2为浙江;3为湖北)
  • 3、异常值的处理
  • #3、
    #箱线图观察“年龄”属性有无异常值
    data.boxplot(column ='年龄' )
    #对异常值进行标注,标注在out1属性中
    import numpy as np
    data['out1'] = np.where(data['年龄'] < 30,0,1)
    #使用2倍标准差法标注异常值,标注在out2属性中
    data['out2'] = abs((data['年龄']-data['年龄'].mean())/data['年龄'].std()) > 2
  • (1)箱线图观察“年龄”属性有无异常值;
  • (2)对异常值进行标注,标注在out1属性中;
  • (3)使用2倍标准差法标注异常值,标注在out2属性中。
  • 4、数据标准化
  • #4、
    #生成数据
    data2 = pd.DataFrame({'酒精含量(%)': [50, 60, 40, 80, 90], '苹果酸含量(%)': [2, 1, 1, 3, 2]})
    print(data2)
    #对各列进行z-score标准化
    from sklearn.preprocessing import StandardScaler
    data2_new1 = StandardScaler().fit_transform(data2)
    print(data2_new1)
    #对各列进行min-max标准化
    from sklearn.preprocessing import MinMaxScaler
    data2_new2 = MinMaxScaler().fit_transform(data2)
    print(data2_new2)
  • 如下数据:
  • (1)对以上数据的各列进行z-score标准化;
  • (2)对以上数据的各列进行min-max标准化。
  • 5、生成多项式特征
  • #5、
    #生成多项式特征
    from sklearn.preprocessing import PolynomialFeatures
    data3 = np.array([[2,3],[2,4]])
    print(data3)
    pf1=PolynomialFeatures(degree=2)
    print(pf1.fit_transform(data3))
    pf2=PolynomialFeatures(degree=2,include_bias=False)
    print(pf2.fit_transform(data3))
    pf3=PolynomialFeatures(degree=2,include_bias=False,interaction_only=True)
    print(pf3.fit_transform(data3))
    
  • 现在有(a,b)两个特征,生成二次多项式则为(1,a, b , ab, a^2, b^2),并用以下数据做测试:data3:

pf1:

pf2:

pf3:

http://www.yayakq.cn/news/34669/

相关文章:

  • 贵州省建设厅网站造价工程信息网杭州企业建站模板
  • 公司支付网站款做凭证管理软件有哪几种
  • 网站开发子孙账号网站怎么做移动图片
  • 网站建设推荐华网天下怎样开通微信公众号
  • 南昌做网站kaiu自己做网站切入地图
  • 广州正规网站建设企业长沙网站制作方法
  • 网站设计有限公司网投计划
  • 贵阳商城网站开发什么平台可以接国外订单
  • wordpress 多站点模式 帐号是通用的么wordpress 防止盗链
  • 企业网站建设要求标准说明网站有什么类型
  • 一个旅游网站怎么做西域数码网站建设
  • 优秀的个人网站设计模板网站价值评估怎么做
  • 做非法网站会怎样vps建设网站别人访问不了
  • 域名关联网站注册界面设计
  • 叫外包公司做网站不肯给源代码的网站流量指的是什么意思
  • 网站建设必会的软件有哪些建设网站ppt
  • php如何自己做网站网站建设工作情况汇报
  • 网站建设公司哪个好点基本型电子商务网站
  • 汕头行业网站石家庄建站源码
  • 吴谨含厂家不愿做网站商家微信小程序怎么开通
  • 网站里面如何做下载的app网站关键词标题怎么写
  • 哪个网站可以免费做国外网站wordpress的博文页面如何自定义
  • 微微营销嘉兴百度seo
  • 厦门APP开发网站开发公司easyUI网站开发
  • 公司网站建设费用怎么入账用云速成美站怎么做网站
  • 瑞昌市建设局网站wordpress去除google字体
  • 赣州建设网站公司网站 底部
  • 延安网站优化市场推广计划
  • 设计师网站哪个好做pc端网站代理商
  • 哪个网站做ppt好网站做301怎么做