当前位置: 首页 > news >正文

网站设计与开发静态网页代码大全

网站设计与开发,静态网页代码大全,做的好的国外网站,文章优化软件transformer的原理部分在前面基本已经介绍完了,接下来就是代码部分,因为transformer可以做的任务有很多,文本的分类、时序预测、NER、文本生成、翻译等,其相关代码也会有些不同,所以会分别进行介绍 但是对于不同的任务…

transformer的原理部分在前面基本已经介绍完了,接下来就是代码部分,因为transformer可以做的任务有很多,文本的分类、时序预测、NER、文本生成、翻译等,其相关代码也会有些不同,所以会分别进行介绍

但是对于不同的任务其流程是一样的,所以一些重复的步骤就不过多解释了。

1、 前期准备

数据和之前LSTM是一样的,同时我们还使用上次训练好的词嵌入模型

以下是代码

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import numpy as np
from gensim.models import KeyedVectors
from sklearn.model_selection import train_test_split
import pandas as pd
import jieba
import re
from sklearn.preprocessing import LabelEncoder# 加载数据
file_path = './data/news.csv'
data = pd.read_csv(file_path)# 显示数据的前几行
data.head()# 文本清洗和分词函数
def clean_and_cut(text):# 删除特殊字符和数字text = re.sub(r'[^a-zA-Z\u4e00-\u9fff]', '', text)# 使用jieba进行分词words = jieba.cut(text)return ' '.join(words)X_train_cut = data["text"].apply(clean_and_cut)
# 显示处理后的文本
data.head()# 将标签转换为数值形式
label_encoder = LabelEncoder()
data["label"] = label_encoder.fit_transform(data["label"])
# 加载保存的word vectors
loaded_wv = KeyedVectors.load('word_vector', mmap='r') class Word2VecDataset(Dataset):def __init__(self, texts, labels, word2vec, max_len=100):self.texts = textsself.labels = labelsself.word2vec = word2vecself.max_len = max_lendef __len__(self):return len(self.texts)def __getitem__(self, idx):text = self.texts[idx]label = self.labels[idx]embeds = [self.word2vec[word] if word in self.word2vec else np.zeros(self.word2vec.vector_size) for word in text]if len(embeds) > self.max_len:embeds = embeds[:self.max_len]else:embeds += [np.zeros(self.word2vec.vector_size) for _ in range(self.max_len - len(embeds))]return torch.tensor(embeds, dtype=torch.float), torch.tensor(label, dtype=torch.long)# texts和labels是数据集中的文本和标签列表
texts = X_train_cut.tolist()
labels = data['label'].tolist()# 划分数据集
train_texts, test_texts, train_labels, test_labels = train_test_split(texts, labels, test_size=0.2)

2、位置编码和主模型

import mathclass PositionalEncoding(nn.Module):def __init__(self, d_model, max_len=100):super(PositionalEncoding, self).__init__()# 创建一个位置编码矩阵pe = torch.zeros(max_len, d_model)position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))pe[:, 0::2] = torch.sin(position * div_term)pe[:, 1::2] = torch.cos(position * div_term)pe = pe.unsqueeze(0)  # (1, max_len, d_model)self.register_buffer('pe', pe)def forward(self, x):# x: (batch_size, max_len, d_model)x = x + self.pe.expand(x.size(0), -1, -1)return x

2.1 PositionalEncoding 类

这个类用于创建和提供位置编码。位置编码是 Transformer 模型中用于注入序列中单词的位置信息的机制。这种位置信息对于模型理解单词的顺序很重要。

初始化方法 __init__
  • d_model:模型的维度,也是词嵌入的维度。
  • max_len:序列的最大长度。
  • pe:位置编码矩阵,大小为 (1, max_len, d_model)。这个矩阵被注册为一个缓冲区,这意味着它会被保存和加载与模型的其他参数一起。
前向传播方法 forward
  • 输入 x 的形状是 (batch_size, max_len, d_model)
  • self.pe.expand(x.size(0), -1, -1):这个操作将位置编码矩阵扩展为 (batch_size, max_len, d_model),以便它可以与输入数据相加。
  • 最后,将扩展后的位置编码矩阵加到输入数据上,并返回结果。
#修改Transformer模型以添加位置编码
class TransformerClassifierWithPE(nn.Module):def __init__(self, num_classes, d_model=100, nhead=2, num_layers=2, dim_feedforward=2048, dropout=0.1):super(TransformerClassifierWithPE, self).__init__()# 位置编码self.pos_encoder = PositionalEncoding(d_model)# Transformer编码器层encoder_layers = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)# 分类器self.classifier = nn.Linear(d_model, num_classes)def forward(self, x):# x: (batch_size, max_len, d_model)x = self.pos_encoder(x)x = x.permute(1, 0, 2)  # (max_len, batch_size, d_model)x = self.transformer_encoder(x)  # (max_len, batch_size, d_model)x = x.mean(dim=0)  # (batch_size, d_model)x = self.classifier(x)  # (batch_size, num_classes)return x

2.2 TransformerClassifierWithPE 类

这个类定义了一个带有位置编码的 Transformer 分类器模型。

初始化方法 __init__
  • num_classes:分类任务的类别数量。
  • d_model:模型的维度,也是词嵌入的维度。
  • nhead:多头注意力的头数。
  • num_layers:Transformer 编码器层的数量。
  • dim_feedforward:前馈网络中的隐藏层维度。
  • dropout:Dropout 的概率。
  • pos_encoder:PositionalEncoding 实例,用于位置编码。
  • transformer_encoder:Transformer 编码器,由多个 TransformerEncoderLayer 组成。
  • classifier:线性分类器,用于生成最终的分类结果。
前向传播方法 forward
  • 输入 x 的形状是 (batch_size, max_len, d_model)
  • 首先,使用 self.pos_encoder(x) 获取位置编码后的输入。
  • 然后,将输入的维度从 (batch_size, max_len, d_model) 转换为 (max_len, batch_size, d_model),这是因为 PyTorch 的 Transformer 编码器期望的输入维度是这样的。
  • 接下来,通过 self.transformer_encoder(x) 应用 Transformer 编码器。
  • 然后,使用 x.mean(dim=0) 获取每个序列的平均表示。
  • 最后,通过 self.classifier(x) 应用线性分类器,得到最终的分类结果。
    这个模型可以用于文本分类任务,其中输入是文本序列的词嵌入表示。

3、训练模型


# 模型参数
d_model = 512
nhead = 8
num_encoder_layers = 3
dim_feedforward = 2048
num_classes = len(data.label.unique())  # 假设label_dict是我们的标签字典
max_len = 256model = TransformerClassifierWithPE( d_model=d_model, nhead=nhead, num_layers=num_encoder_layers, dim_feedforward=dim_feedforward, num_classes=num_classes, max_len=max_len,dropout=0.1)-----------------------------
TransformerModel((pos_encoder): PositionalEncoding()(transformer_encoder): TransformerEncoder((layers): ModuleList((0-2): 3 x TransformerEncoderLayer((self_attn): MultiheadAttention((out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True))(linear1): Linear(in_features=512, out_features=2048, bias=True)(dropout): Dropout(p=0.1, inplace=False)(linear2): Linear(in_features=2048, out_features=512, bias=True)(norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)(dropout1): Dropout(p=0.1, inplace=False)(dropout2): Dropout(p=0.1, inplace=False))))(decoder): Linear(in_features=512, out_features=10, bias=True)
)
# 训练模型
num_epochs = 20
for epoch in range(num_epochs):for inputs, labels in train_loader:# 清除梯度optimizer.zero_grad()# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 反向传播loss.backward()# 更新参数optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
# 在测试集上评估模型
model.eval()
with torch.no_grad():correct = 0total = 0for inputs, labels in test_loader:outputs = model(inputs)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the model on the test set: {100 * correct / total}%')
http://www.yayakq.cn/news/335288/

相关文章:

  • 大良建站公司行业现状泉州网站建设服务
  • 网站建设情况 报告做设计网站赚钱吗
  • 网站开发个人感想莱芜在线论坛话题莱芜都市网
  • 做网站建设最好学什么蓝色脚手架织梦企业网站模板
  • 适合团购报名的网站开发制作网页时什么是错误的做法
  • 营销型网站有什么特点如何在微信平台做购买网站
  • 正能量网站有哪些php仿博客园网站
  • php做网站的公司有哪些广州网站建设 致茂
  • 毕设什么类型网站容易做做交互的网站
  • 网站建设模板制作前景模板网站官网
  • flash网站尺寸桂林
  • 网站静态化设计专门做珠宝的网站
  • 滑县网站建设哪家便宜捷克cz公司网站
  • 分类信息网站手机版安庆网站建设公司
  • 做网站排名优化是怎么回事今天福州发生的重大新闻
  • 装修网站怎么做的好处做网站后台用什么语言好
  • 天元建设集团有限公司济南中标项目宁波seo优化
  • 深圳网站建设公司百度蜘蛛开发网站
  • 景区网站建设的目标定位本地主机做网站
  • 地方网站商城怎么做模板之家官网首页
  • 网站培训方案自动生成设计图
  • 温州英文网站建设网站建设制作 南京公司哪家好
  • 个人网站用移动硬盘做服务器网站底部代码大全
  • 做外贸最适合的网站系统更换网站域名之后
  • 江苏省住房城乡建设厅门户网站亚洲建行网站打不开
  • 网站内容建设 发布形式手机网站与pc网站同步
  • 化妆品公司网站设计WordPress免费问答主题
  • 长春作网站的那家专业做化学招聘的网站有哪些
  • 做网站售后几年为wordpress首页添加关键词
  • 网站群系统破解版佛山知名网站建设公司