当前位置: 首页 > news >正文

灰色网站网站页面设计在哪里word

灰色网站网站,页面设计在哪里word,国外平面设计素材网站,网址创作目录 背景思路与核心代码数值实验优缺点分析参考文献 背景 在前面2文,我们分别讨论了利用夹角余弦来计算轨迹相似度和利用缓冲原理来计算轨迹相似度两种方法,前者可以作为一个baseline提供参考,后者的计算更符合人们的感官和事实&#xff0c…

目录

  • 背景
  • 思路与核心代码
  • 数值实验
  • 优缺点分析
  • 参考文献

背景

在前面2文,我们分别讨论了利用夹角余弦来计算轨迹相似度和利用缓冲原理来计算轨迹相似度两种方法,前者可以作为一个baseline提供参考,后者的计算更符合人们的感官和事实,今天,我们要从计算机视觉出发,考察两条轨迹的相似度。

思路与核心代码

可以这么去想,首先,分别将两条轨迹点“串点连线”画出两条轨迹,同时控制画布的大小和渲染颜色,比如都是400*400像素的画布和轨迹都是黑色线段串连,其余都是白色的,如下图所示,

图1 轨迹1
图2 轨迹2

这样比较两条轨迹的相似度就转化为比较两张图片的相似度,而在计算机视觉领域,就有很多方法来比较两张图片相似度,这里采用图像切割法。图像切割法也比较好理解,就是用同样大小的网格去按照同样的方式去切割这两张图片,将图片分成相同数目的子图,相当于建立了一个网格坐标系,轨迹1的子图和轨迹2的子图在位置上可以建立起一一对应关系,也就是他们在网格坐标的位置一一对应,如果切割出来的位于网格坐标相同位置的某个子图恰好有轨迹1的一部分,又有轨迹2的一部分,那么就可以认为这个子图是这两条轨迹共同经过的区域,可以设计出一个Kronecker函数,对于任意的相同坐标相同尺寸的2个子图 i m g i img_i imgi i m g i ′ img_i' imgi

K ( i m g i , i m g i ′ ) = { 1 , i m g i ∩ i m g i ′ ≠ ∅ 0 , i m g i ∩ i m g i ′ = ∅ K(img_i, img_i')=\left\{ \begin{aligned} 1 & , img_i \cap img_i' \neq \emptyset\\ 0 &, img_i \cap img_i' = \emptyset \end{aligned} \right. K(imgi,imgi)={10,imgiimgi=,imgiimgi=
其中, i m g i img_i imgi表示轨迹1的第i个子图, i m g i ′ img_i' imgi表示轨迹2的第i个子图。然后,去统计轨迹1经过多少个子图,轨迹2经过多少个子图,其中,轨迹1和轨迹2共同经过的子图有多少个,从而就能计算出这两条轨迹的相似度了。

def trajectoryLine(trajectory, fig_name, grid_num): #轨迹连线绘图并网络切割fig = plt.figure(figsize= (4, 4)) #dpi=300ax = plt.subplot(111)ax.plot(trajectory['lng'], trajectory['lat'], color = 'k') #轨迹图,  marker ='.',  color = 'k', linewidth = 0.0002ax.set_axis_off()plt.savefig(r"D:\钢联物流\中交轨迹与手机轨迹相似度\图片\{}.png".format(fig_name)) #保存本地buffer_ = io.BytesIO() #开辟新的缓存plt.savefig(buffer_, format = 'png')buffer_.seek(0)image = Image.open(buffer_)image_parts = [] #用来存放切割后的局部图片PIL.Image.Imageweight = int(image.size[0] // grid_num)height = int(image.size[1] // grid_num)for j in range(grid_num):for i in range(grid_num):box = (weight * i, height * j, weight * (i + 1), height * (j + 1))part = image.crop(box)image_parts.append(part)buffer_.close() #释放缓存return image_partsdef whetherBlank(image): #判断一张图片是否纯白,如果是返回0,反之,返回1# image_array = np.int8(image)if np.mean(image)==255: #纯白result = 0else:result = 1return resultdef cvSimilarity(traj1, traj2): #两个轨迹绘制并网格切分traj1_parts = trajectoryLine(traj1, "traj1_line", grid_num = 40)traj2_parts = trajectoryLine(traj2, "traj2_line", grid_num = 40)traj1_list = [whetherBlank(part) for part in traj1_parts]traj2_list = [whetherBlank(part) for part in traj2_parts]print(len(traj1_list))intersection_cnt = 0for i in range(len(traj1_list)):if traj1_list[i]==1 and traj2_list[i]==1:intersection_cnt +=1cv_sim_value = intersection_cnt/(np.sum(traj1_list)+np.sum(traj2_list)-intersection_cnt)print(intersection_cnt, np.sum(traj1_list), np.sum(traj2_list))print("网格相似度", cv_sim_value)return cv_sim_value

数值实验

下面是对不同运单计算出来的相似度对比,整体还不错,前者是基于缓冲的相似度,后者是图像切割相似度,两者具有高度的一致性,但是在相似度高的轨迹,图像切割法会更高,在相似度本来就很低的对比情况下,图像切割法也会略微高出一些。

trajectory

优缺点分析

1,图像切割法直观形象好理解;
2,操作简便,无需做过多的考虑;
3,未考虑小图中各自轨迹点的密集程度的对相似度的影响;
4,网眼尺寸不好把握,其实也可以像缓冲相似度那样设计一个toleranceTest来决定网眼大小,也可以当作一个超参数,设计一个metric来进行调优。

参考文献

1,计算机视觉 - 图像相似度
https://blog.51cto.com/u_15668366/5412298
2,轨迹路线相似度计算
https://blog.csdn.net/weixin_39459401/article/details/129157653
3,Python-Opencv中用compareHist函数进行直方图比较进行对比图片
https://blog.csdn.net/qq_44262417/article/details/89217011
4,计算两幅图像的相似度(PSNR、SSIM、MSE、余弦相似度、MD5、直方图、互信息、Hash)& 代码实现 与举例
https://blog.csdn.net/m0_61899108/article/details/127715737

http://www.yayakq.cn/news/993683/

相关文章:

  • 新网站做seo优化步骤企业公司网站 北京
  • 企业信息发布系统唐山seo网站建设
  • 宁阳网站开发企业宣传片文案高级
  • 京东网站建设的策划书网页开发项目
  • 菏泽做网站建设的公司网站域名费用
  • 网站开发环境配置广东二次感染最新消息
  • 鞍山网站制作一般多少钱网站设计机构图
  • ftp 迁移 网站卖wordpress主题
  • 惠州建设工程造价管理协会网站360免费建站搜索引擎收录吗
  • 威海网站seo做快递单的网站会不会是骗人的
  • 广州专业网站设计定制东平企业建站公司
  • 成都网站建设q479185700棒自贡建设局网站
  • 建筑营销型网站网站建设与推广论文
  • 百度推广需要备案的网站吗免费的英文电子外贸网站建设
  • 做简单网站后端需要学什么长沙哪家公司做网站
  • wordpress本地网站上传卡片式网站
  • 想攻击一个网站怎么做搜索关键词的网站
  • 碗网站中拓网络科技有限公司
  • 一站式互联网营销平台当当网网站系统建设的意义
  • 南京网站的优化企业网站推广定义
  • 洛阳做网站哪家好做车展招商的网站
  • 网站建设初期工作方案手机网站怎么布局
  • 山西大同网站建设千鸟云网站建设
  • 高邮建设银行网站兼职做诚信网站认证
  • 东莞做网站 汇卓昆明app制作公司电话
  • 网站后台m做网站都得会什么技术
  • 网站关键词怎么修改网络推广专员是做什么的
  • 长沙网站优化方法项目管理培训机构排名
  • 二手商品网站开发背景wordpress添加磁力下载地址
  • 怎样建设自己的物流信息网站相关网站建设