当前位置: 首页 > news >正文

什么网站帮人做网页山东网站建设开发外包

什么网站帮人做网页,山东网站建设开发外包,番禺网站设计公司,怎么做挖矿网站DQN算法详解 一.概述 概括来说,RL要解决的问题是:让agent学习在一个环境中的如何行为动作(act), 从而获得最大的奖励值总和(total reward)。 这个奖励值一般与agent定义的任务目标关联。 agent需要的主要学习内容:第一是行为策略…

DQN算法详解

一.概述

概括来说,RL要解决的问题是:让agent学习在一个环境中的如何行为动作(act), 从而获得最大的奖励值总和(total reward)。
这个奖励值一般与agent定义的任务目标关联。
agent需要的主要学习内容:第一是行为策略(action policy), 第二是规划(planning)。
其中,行为策略的学习目标是最优策略, 也就是使用这样的策略,可以让agent在特定环境中的行为获得最大的奖励值,从而实现其任务目标。

行为(action)可以简单分为:

  • 连续的:如赛 车游戏中的方向盘角度、油门、刹车控制信号,机器人的关节伺服电机控制信号。
  • 离散的:如围棋、贪吃蛇游戏。 Alpha Go就是一个典型的离散行为agent。

DDPG是针对连续行为的策略学习方法。

二.DDPG的定义和应用场景

在RL领域,DDPG主要从:PG -> DPG -> DDPG 发展而来。

基本概念:

PG

R.Sutton 在2000年提出的Policy Gradient 方法,是RL中,学习连续的行为控制策略的经典方法,其提出的解决方案是:
通过一个概率分布函数 , 来表示每一步的最优策略, 在每一步根据该概率分布进行action采样,获得当前的最佳action取值;即:
在这里插入图片描述
生成action的过程,本质上是一个随机过程;最后学习到的策略,也是一个随机策略(stochastic policy).

DPG

Deepmind的D.Silver等在2014年提出DPG: Deterministic Policy Gradient, 即确定性的行为策略,每一步的行为通过函数μ 直接获得确定的值:
在这里插入图片描述
这个函数μ即最优行为策略,不再是一个需要采样的随机策略。

为何需要确定性的策略?简单来说,PG方法有以下缺陷:

  1. 即使通过PG学习得到了随机策略之后,在每一步行为时,我们还需要对得到的最优策略概率分布进行采样,才能获得action的具体值;而action通常是高维的向量,比如25维、50维,在高维的action空间的频繁采样,无疑是很耗费计算能力的;
  2. 在PG的学习过程中,每一步计算policy gradient都需要在整个action space进行积分:
    在这里插入图片描述

DDPG

Deepmind在2016年提出DDPG,全称是:Deep Deterministic Policy Gradient,是将深度学习神经网络融合进DPG的策略学习方法。
相对于DPG的核心改进是: 采用卷积神经网络作为策略函数μ 和Q 函数的模拟,即策略网络和Q网络;然后使用深度学习的方法来训练上述神经网络。

Q函数的实现和训练方法,采用了Deepmind 2015年发表的DQN方法 ,即 Alpha Go使用的Q函数方法。

1.DDQN解决问题方法

  1. 使用卷积神经网络来模拟策略函数和Q函数,并用深度学习的方法来训练,证明了在RL方法中,非线性模拟函数的准确性和高性能、可收敛;
    而DPG中,可以看成使用线性回归的机器学习方法:使用带参数的线性函数来模拟策略函数和Q函数,然后使用线性回归的方法进行训练。
  2. experience replay memory的使用:actor同环境交互时,产生的transition数据序列是在时间上高度关联(correlated)的,如果这些数据序列直接用于训练,会导致神经网络的overfit,不易收敛。
    DDPG的actor将transition数据先存入experience replay buffer, 然后在训练时,从experience replay buffer中随机采样mini-batch数据,这样采样得到的数据可以认为是无关联的。
  3. target 网络和online 网络的使用, 使的学习过程更加稳定,收敛更有保障。
    在这里插入图片描述

四、 代码详解

import gym
import paddle
import paddle.nn as nn
from itertools import count
from paddle.distribution import Normal
import numpy as np
from collections import deque
import random
import paddle.nn.functional as F
# 定义评论家网络结构
# DDPG这种方法与Q学习紧密相关,可以看作是连续动作空间的深度Q学习。
class Critic(nn.Layer):def __init__(self):super(Critic, self).__init__()self.fc1 = nn.Linear(3, 256)self.fc2 = nn.Linear(256 + 1, 128)self.fc3 = nn.Linear(128, 1)self.relu = nn.ReLU()def forward(self, x, a):x = self.relu(self.fc1(x))x = paddle.concat((x, a), axis=1)x = self.relu(self.fc2(x))x = self.fc3(x)return x# 定义演员网络结构
# 为了使DDPG策略更好地进行探索,在训练时对其行为增加了干扰。 原始DDPG论文的作者建议使用时间相关的 OU噪声 ,
# 但最近的结果表明,不相关的均值零高斯噪声效果很好。 由于后者更简单,因此是首选。
class Actor(nn.Layer):def __init__(self, is_train=True):super(Actor, self).__init__()self.fc1 = nn.Linear(3, 256)self.fc2 = nn.Linear(256, 128)self.fc3 = nn.Linear(128, 1)self.relu = nn.ReLU()self.tanh = nn.Tanh()self.noisy = Normal(0, 0.2)self.is_train = is_traindef forward(self, x):x = self.relu(self.fc1(x))x = self.relu(self.fc2(x))x = self.tanh(self.fc3(x))return xdef select_action(self, epsilon, state):state = paddle.to_tensor(state,dtype="float32").unsqueeze(0)with paddle.no_grad():action = self.forward(state).squeeze() + self.is_train * epsilon * self.noisy.sample([1]).squeeze(0)return 2 * paddle.clip(action, -1, 1).numpy()# 重播缓冲区:这是智能体以前的经验, 为了使算法具有稳定的行为,重播缓冲区应该足够大以包含广泛的体验。
# 如果仅使用最新数据,则可能会过分拟合,如果使用过多的经验,则可能会减慢模型的学习速度。 这可能需要一些调整才能正确。
class Memory(object):def __init__(self, memory_size: int) -> None:self.memory_size = memory_sizeself.buffer = deque(maxlen=self.memory_size)def add(self, experience) -> None:self.buffer.append(experience)def size(self):return len(self.buffer)def sample(self, batch_size: int, continuous: bool = True):if batch_size > len(self.buffer):batch_size = len(self.buffer)if continuous:rand = random.randint(0, len(self.buffer) - batch_size)return [self.buffer[i] for i in range(rand, rand + batch_size)]else:indexes = np.random.choice(np.arange(len(self.buffer)), size=batch_size, replace=False)return [self.buffer[i] for i in indexes]def clear(self):self.buffer.clear()# 定义软更新的函数
def soft_update(target, source, tau):for target_param, param in zip(target.parameters(), source.parameters()):target_param.set_value(target_param * (1.0 - tau) + param * tau)# 定义环境、实例化模型env = gym.make('Pendulum-v1')
actor = Actor()
critic = Critic()
actor_target = Actor()
critic_target = Critic()# 定义优化器
critic_optim = paddle.optimizer.Adam(parameters=critic.parameters(), learning_rate=3e-5)
actor_optim = paddle.optimizer.Adam(parameters=actor.parameters(), learning_rate=1e-5)# 定义超参数
explore = 50000
epsilon = 1
gamma = 0.99
tau = 0.001memory_replay = Memory(50000)
begin_train = False
batch_size = 32learn_steps = 0#writer = LogWriter('logs')# 训练循环
for epoch in count():state = env.reset()episode_reward = 0for time_step in range(200):action = actor.select_action(epsilon, state)next_state, reward, done, _ = env.step([action])episode_reward += rewardreward = (reward + 8.1) / 8.1memory_replay.add((state, next_state, action, reward))if memory_replay.size() > 1280:learn_steps += 1if not begin_train:print('train begin!')begin_train = Trueexperiences = memory_replay.sample(batch_size, False)batch_state, batch_next_state, batch_action, batch_reward = zip(*experiences)batch_state = paddle.to_tensor(batch_state, dtype="float32")batch_next_state = paddle.to_tensor(batch_next_state, dtype="float32")batch_action = paddle.to_tensor(batch_action, dtype="float32").unsqueeze(1)batch_reward = paddle.to_tensor(batch_reward, dtype="float32").unsqueeze(1)# 均方误差 y - Q(s, a) , y是目标网络所看到的预期收益, 而 Q(s, a)是Critic网络预测的操作值。# y是一个移动的目标,评论者模型试图实现的目标;这个目标通过缓慢的更新目标模型来保持稳定。with paddle.no_grad():Q_next = critic_target(batch_next_state, actor_target(batch_next_state))Q_target = batch_reward + gamma * Q_nextcritic_loss = F.mse_loss(critic(batch_state, batch_action), Q_target)critic_optim.clear_grad()critic_loss.backward()critic_optim.step()#writer.add_scalar('critic loss', critic_loss.numpy(), learn_steps)# 使用Critic网络给定值的平均值来评价Actor网络采取的行动。 我们力求使这一数值最大化。# 因此,我们更新了Actor网络,对于一个给定状态,它产生的动作尽量让Critic网络给出高的评分。critic.eval()actor_loss = - critic(batch_state, actor(batch_state))# print(actor_loss.shape)actor_loss = actor_loss.mean()actor_optim.clear_grad()actor_loss.backward()actor_optim.step()critic.train()#writer.add_scalar('actor loss', actor_loss.numpy(), learn_steps)soft_update(actor_target, actor, tau)soft_update(critic_target, critic, tau)env.render()if epsilon > 0:epsilon -= 1 / explorestate = next_state#writer.add_scalar('episode reward', episode_reward, epoch)if epoch % 10 == 0:print('Epoch:{}, episode reward is {}'.format(epoch, episode_reward))if epoch % 200 == 0:paddle.save(actor.state_dict(), 'model/ddpg-actor' + str(epoch) + '.para')paddle.save(critic.state_dict(), 'model/ddpg-critic' + str(epoch) + '.para')print('model saved!')
http://www.yayakq.cn/news/244684/

相关文章:

  • 北京 设计 网站建设克拉玛依做网站
  • 江西雄基建设网站常见的域名有哪些
  • 办事处网站建设衡水网站托管
  • 职业学校网站模板建行官方网站首页
  • 网站优化怎么做论坛php网站开发环境搭建
  • 说一说网站建设的含义慧聪网是干什么的
  • 四川建设安全监督管理局网站网站运营推广公司
  • 河北省住房和建设厅网站建网站需求
  • 产品网站别人是如何做优化的wordpress如何数据转移
  • 网站建设工具品牌有哪些磁盘阵列做网站
  • 网站有备案 去掉备案wordpress搜索插件
  • 特效网站上海抖音代运营
  • 吉安公司做网站营销型网站建设方案演讲ppt
  • 出国留学网站开发公司网站建设前期方案
  • 网站网页的书签怎么做苏州公司网站建设报价
  • 网站快速备案安全吗网站后台html编辑器
  • 兰州中川国际机场t3航站楼wordpress 备案号插件
  • 网站做的好的公司名称专业建站网站服务
  • 做网站推荐嘉兴市建设官方网站
  • 免费装修效果图网站小程序哪家公司做的好
  • 做网赌网站做程序员需要什么条件
  • 我的世界皮肤网站做网页设计的标准尺寸
  • 网站建设与推广策划案案例wordpress 支持数据库
  • 班级网站开发环境wordpress 显示子菜单
  • 从零开始学做网站 网站百度上海分公司
  • 菏泽网站备案拍照最新logo设计大赛
  • 许昌做网站汉狮网络网站建设app下载
  • 金湖建设局网站cad做彩图那个网站应用好用
  • 广东住房和城乡建设厅官方网站制作销售网站有哪些
  • 建设工程消防验收网站雏鸟app网站推广