当前位置: 首页 > news >正文

信阳专业做网站公司wordpress靶场

信阳专业做网站公司,wordpress靶场,中软国际,网站建设奕网情深前言 \quad~~一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。 进入正题 根据随机效用理论,决策…

前言

\quad~~   一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。

进入正题

根据随机效用理论,决策者在面对 nnn 个备选方案做选择时,会根据自身的意愿感知哪一个备选方案对自身而言是最好的,从而作出自身选择。这里的最好用数量来进行衡量就可以说是效用最高的

比如从A点到B点共有 nnn 条路,我现在需要从A点到B点,从节约时间的角度来考虑的话,那么我肯定希望选择最快捷的一条路。即如果我能以最快的时间到达我的目的地的话,对我而言,我就得到了最高的出行效用。

通常呢,我们的感知能力是有限的,如果我们记选择任意一个方案 jjj 的效用为 UjU_jUj,那么 UjU_jUj 为一个随机变量,它可以分为两部分,一部分呢是我们可以以实际那数字量化出来的,我们称为系统效用。另一部分呢为我们无法测量出来的,或估测时的误差,为一个随机变量,我们称为感知误差项。因此这里的方案 jjj 的效用 UjU_jUj 就可以写为系统效用 VjV_jVj 与随机误差项 εj\varepsilon_jεj 的和,即:
Uj=Vj+εj.(1)U_j=V_j+\varepsilon_j.\tag{1}Uj=Vj+εj.(1)
在多项式Logit模型中,我们假设随机误差项 εj\varepsilon_jεj 服从零均值的Gumbel分布,其概率密度函数与累积分布函数分别为:
f(x)=1θexp(−xθ−Φ)exp[−exp(xθ−Φ)],(2)f(x)=\frac{1}{\theta}exp(-\frac{x}{\theta}-\Phi)exp[-exp(\frac{x}{\theta}-\Phi)],\tag{2}f(x)=θ1exp(θxΦ)exp[exp(θxΦ)],(2)F(x)=Pr(εj≤x)=exp[−exp(xθ−Φ)],(3)F(x)=Pr(\varepsilon_j\leq x)=exp[-exp(\frac{x}{\theta}-\Phi)],\tag{3}F(x)=Pr(εjx)=exp[exp(θxΦ)],(3)这里的参数 Φ\PhiΦ 为欧拉常数,Φ≈0.577\Phi\approx0.577Φ0.577
从而可以得出决策者选择备选方案 jjj 的概率为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj/θ)∑kexp(Vk/θ).(4)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j/\theta)}{\sum_k exp(V_k/\theta)}.\tag{4}pj=Pr(Uj>Uk,k=j)=kexp(Vk/θ)exp(Vj/θ).(4)

而通常在路径选择情形中我们以出行阻抗作为我们的出行负效用(因为我们出行就会花费时间,金钱等,这都属于是对我们自身资源的一种消耗),负效用越小的路径被选择的可能性就会越大。这里呢,同样因为人们的感知,计算等能力有限,我们所判定的出行负效用也为一个随机变量,为可直接估量的系统效用与随机误差项的和。同样以路径 jjj 为例,其感知出行负效用为 CjC_jCj, 可进行估测的系统效用为 cjc_jcj,随机误差项为 ξj\xi_jξj, 则 CjC_jCj 就可写为:
Cj=cj+ξj,(5)C_j=c_j+\xi_j,\tag{5}Cj=cj+ξj,(5)那么选择路径 jjj 的效用就可以写为:Uj=−Cj,(6)U_j=-C_j,\tag{6}Uj=Cj,(6)那么我们使用概率密度函数公式 (2) 计算得出的选择路径 jjj 的概率为:
pj=Pr(Uj>Uk,∀k≠j)=exp(−cj/θ)∑kexp(−ck/θ).(7)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-c_j/\theta)}{\sum_k exp(-c_k/\theta)}.\tag{7}pj=Pr(Uj>Uk,k=j)=kexp(ck/θ)exp(cj/θ).(7)但通常呢,路径选择概率会写为如下形式:
pj=Pr(Uj>Uk,∀k≠j)=exp(−θcj)∑kexp(−θck).(8)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-\theta c_j)}{\sum_k exp(-\theta c_k)}.\tag{8}pj=Pr(Uj>Uk,k=j)=kexp(θck)exp(θcj).(8)所以公式 (7) 和 (8) 同样是路径选择概率公式为什么不一样呢?

解决问题

观察概率密度函数,即公式 (2), 如果令 y=−xθy=-\frac{x}{\theta}y=θx, 那么就有f(−θy)=1θexp(y−Φ)exp[−exp(y−Φ)],(9)f(-\theta y)=\frac{1}{\theta}exp(y-\Phi)exp[-exp(y-\Phi)],\tag{9}f(θy)=θ1exp(yΦ)exp[exp(yΦ)],(9)那么θf(−θy)=exp(y−Φ)exp[−exp(y−Φ)],(10)\theta f(-\theta y)=exp(y-\Phi)exp[-exp(y-\Phi)],\tag{10}θf(θy)=exp(yΦ)exp[exp(yΦ)],(10)对应的累积分布函数为θF(−θy)=exp[−exp(y−Φ)],(11)\theta F(-\theta y)=exp[-exp(y-\Phi)],\tag{11}θF(θy)=exp[exp(yΦ)],(11)看着公式 (10) 和公式 (11) 是不是相对于(2),(3) 来说更简洁呢?公式 (10) 和公式 (11) 变成了零均值的标准Gumbel分布。所以如果公式(2)为随机变量 εj\varepsilon_jεj 的概率密度函数,从简化的角度来看,我们是不是可以让随机变量 ξj=−εj/θ\xi_j =- \varepsilon_j/\thetaξj=εj/θ,即εj=−θξj\varepsilon_j= -\theta \xi_jεj=θξj,那么为了统一公式 (6),我们可以令 Vj=−θcjV_j = -\theta c_jVj=θcj,那么 εj\varepsilon_jεj 经过处理后的概率密度函数就可以表示为公式 (10) 和公式 (11),即选择路径 jjj 的概率就表示为pj=∫−∞+∞exp[−exp(εj+Vj−Vk−Φ)]∗exp(εj−Φ)exp[−exp(εj−Φ)]dεj,(12)p_j=\int_{-\infty}^{+\infty}exp[-exp(\varepsilon_j+V_j-V_k-\Phi)]* \\ exp(\varepsilon_j-\Phi)exp[-exp(\varepsilon_j-\Phi)]d\varepsilon_j, \tag{12}pj=+exp[exp(εj+VjVkΦ)]exp(εjΦ)exp[exp(εjΦ)]dεj,(12)
整理可得概率公式为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj)∑kexp(Vk),(13)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j)}{\sum_k exp(V_k)},\tag{13}pj=Pr(Uj>Uk,k=j)=kexp(Vk)exp(Vj),(13)Vj=−θcjV_j = -\theta c_jVj=θcj代入公式 (13),即得到公式 (8)。

http://www.yayakq.cn/news/651048/

相关文章:

  • 宝塔面板做网站只做网站不推广能行吗
  • 网站的建设时间北京欢迎您网站建设
  • 营销型网站免费模板广东双语网站建设多少钱
  • 湖南网站建设设计网站与微网站区别
  • 精简网站模板网站建设中网站图片如何修改
  • 网站管理文档怎么写荣县网站开发
  • 凡科互动网站登录入口户外保险网站
  • 网站建设制作价格低分类信息网站建设与O2O的应用
  • 网站建设中的功能wordpress爱主题
  • wdcp上传网站旅行社ota平台运营做些什么
  • 网站关键词搜索优化是怎么做的制作网站app
  • 商务网站要怎么设计网站建设如何就接入支付宝
  • 手机网站公司网站企业建设公司排名
  • 网站程序是什么?200款软件大全
  • 昆明网站设计方案微信朋友圈怎么投放广告
  • 延吉市建设厅网站自助建站系统破解版
  • 建设银行招聘网站甘肃分行wordpress 没有小工具
  • 四平建设局网站ecto wordpress
  • 自建站怎么接入支付可以做网站的行业
  • 网站制作客户资料网站建设的指标
  • 网站 缓存方式百度搜索网站优化
  • 电子商务网站设计心得体会上海家装公司十大排名
  • 做网站需要购买地域名吗盘锦工程建设信息网站
  • 做网站怎么设置会员天津 网站建设公司
  • 广州建设网站哪家好工程招标信息网
  • 网站开发图片压缩上传报酬班级网站源代码
  • 网站基本内容yandex引擎
  • 电子商务网站经营性icp国内比较好的wordpress
  • 学校网站开发与实现的解决思路海南网站seo
  • 眉县做网站wordpress去掉评论邮箱