当前位置: 首页 > news >正文

开网站是干什么的网站模板 数据库

开网站是干什么的,网站模板 数据库,学校网站怎么做推广方案,企业网站创建的步骤时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测 目录 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 基于贝叶斯(bayes)优化卷积神经网络-门控循环单元(CNN-GR…

时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测

目录

    • 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

1

2
3
4
5
6
7

基本介绍

基于贝叶斯(bayes)优化卷积神经网络-门控循环单元(CNN-GRU)时间序列预测,BO-CNN-GRU/Bayes-CNN-GRU时间序列预测模型。基于贝叶斯算法(bayes)优化卷积神经网络-门控循环单元(CNN-GRU)时间序列预测,单列数据集.
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等,方便学习和替换数据。
3.运行环境matlab2020b及以上。

模型描述

  • CNN 是通过模仿生物视觉感知机制构建而成,能够进行有监督学习和无监督学习。隐含层的卷积核参数共享以及层间连接的稀疏性使得CNN 能够以较小的计算量从高维数据中提取深层次局部特征,并通过卷积层和池化层获得有效的表示。CNN 网络的结构包含两个卷积层和一个展平操作,每个卷积层包含一个卷积操作和一个池化操作。第二次池化操作后,再利用全连接层将高维数据展平为一维数据,从而更加方便的对数据进行处理。
    10

  • 当时间步数较大时,RNN 的历史梯度信息无法一直维持在一个合理的范围内,因此梯度衰减或爆炸几乎是不可避免的,从而导致RNN 将很难从长距离序列中捕捉到有效信息。LSTM 作为一种特殊的RNN,它的提出很好的解决了RNN 中梯度消失的问题。而GRU 则是在LSTM 的基础上提出的,其结构更简单,参数更少,训练时间短,训练速度也比LSTM更快。
    11

  • 为使模型具有自动提取特征的功能,一般采用深度学习的方法来进行构建。其中,CNN 在提取特征这方面能力较强,它通常依靠卷积核来对特征进行提取。但是,卷积核的存在又限制了CNN 在处理时间序列数据时的长期依赖性问题。

  • 在这项研究中,GRU 的引入可以有效地解决这个问题,并且我们可以捕获时间序列前后的依赖关系。另一方面, GRU 模块的目的是捕获长期依赖关系,它可以通过存储单元长时间学习历史数据中的有用信息,无用的信息将被遗忘门遗忘。另外,直接用原始特征进行处理,会极大的占用模型的算力,从而降低模型的预测精度,CNN-GRU模型结合了CNN和GRU的优点。

  • 通常,在模型训练过程中需要对超参数进行优化,为模型选择一组最优的超参数,以提高预测的性能和有效性。 凭经验设置超参数会使最终确定的模型超参数组合不一定是最优的,这会影响模型网络的拟合程度及其对测试数据的泛化能力。

  • 伪代码
    9

  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
  • 完整程序和数据下载方式3(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的所有程序,数据订阅后私信我获取):MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%%  贝叶斯优化网络参数
BayesObject = bayesopt(fitness, optimVars, ...    % 优化函数,和参数范围'MaxTime', Inf, ...                      % 优化时间(不限制) 'IsObjectiveDeterministic', false, ...'MaxObjectiveEvaluations', 10, ...       % 最大迭代次数'Verbose', 1, ...                        % 显示优化过程'UseParallel', false);%% 创建混合CNN-GRU网络架构
%  创建"CNN-GRU"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% CNN特征提取convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);batchNormalizationLayer('Name','bn')eluLayer('Name','elu')averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')% 展开层sequenceUnfoldingLayer('Name','unfold')% 平滑层flattenLayer('Name','flatten')% GRU特征学习gruLayer(50,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% GRU输出gruLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.yayakq.cn/news/554691/

相关文章:

  • 无线网络网站dns解析失败小型企业互联网解决方案
  • 网站搭建规划模板网络营销是什么系
  • 做网站小程序源码广东东莞免费网站制作公司
  • 优酷视频网站源码怎么制作网站论坛模板
  • 嘉兴网站推广价格柳州网站制作
  • 北京高端网站建设公司柳州网站优化
  • 南通网站推广公司同城换物网站为什么做不起来
  • jsp网站开发过程mip网站建设
  • 域名销售网站高端网站定制开发解决方案
  • 外贸网站建设需怎么查网站流量
  • 做网站难还是app难某公司网站建设策划
  • 做彩票网站网站备案级别
  • wamp配置多个网站安全优化大师
  • 深圳网站公司网站制作阿里快速建站
  • 深圳展览设计网站建设港闸网站建设制作
  • wordpress网站扫描工具人与马做的网站
  • dz论坛可以做招聘网站辛集做网站
  • 电子商务网站建设如何实施有什么推广软件
  • 网站建设制作临沂网站建设选盛誉大连网站建设收费
  • 昆明网站搭建多少钱wordpress安装下载
  • 华东民航机场建设公司网站企业网站建设 管理 维护 请找
  • 某网站seo诊断分析和优化方案icp备案系统
  • 青岛网站制作百家号建设行业信息和技术应用服务网站
  • 安康网站开发wordpress无插件邮件
  • 服装行业网站开发网站开发 团队协作
  • 杭州外贸网站长沙室内设计公司排名
  • 网站首页不收录网站建设套定额
  • 网站域名需要购买吗可以把网站生成软件
  • 网站建设注意的问题怎样制作微信网站
  • 陕西省住房建设厅网站校史网站开发技术