当前位置: 首页 > news >正文

深圳公司网站建设设计wordpress页面编辑器

深圳公司网站建设设计,wordpress页面编辑器,郑州网站建设知名公司,温岭企业网站建设公司目录 一、用法精讲 961、pandas.IntervalIndex.mid属性 961-1、语法 961-2、参数 961-3、功能 961-4、返回值 961-5、说明 961-6、用法 961-6-1、数据准备 961-6-2、代码示例 961-6-3、结果输出 962、pandas.IntervalIndex.length属性 962-1、语法 962-2、参数 …

目录

一、用法精讲

961、pandas.IntervalIndex.mid属性

961-1、语法

961-2、参数

961-3、功能

961-4、返回值

961-5、说明

961-6、用法

961-6-1、数据准备

961-6-2、代码示例

961-6-3、结果输出

962、pandas.IntervalIndex.length属性

962-1、语法

962-2、参数

962-3、功能

962-4、返回值

962-5、说明

962-6、用法

962-6-1、数据准备

962-6-2、代码示例

962-6-3、结果输出

963、pandas.IntervalIndex.get_loc方法

963-1、语法

963-2、参数

963-3、功能

963-4、返回值

963-5、说明

963-6、用法

963-6-1、数据准备

963-6-2、代码示例

963-6-3、结果输出

964、pandas.IntervalIndex.get_indexer方法

964-1、语法

964-2、参数

964-3、功能

964-4、返回值

964-5、说明

964-6、用法

964-6-1、数据准备

964-6-2、代码示例

964-6-3、结果输出

965、pandas.MultiIndex类

965-1、语法

965-2、参数

965-3、功能

965-4、返回值

965-5、说明

965-6、用法

965-6-1、数据准备

965-6-2、代码示例

965-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

961、pandas.IntervalIndex.mid属性
961-1、语法
# 961、pandas.IntervalIndex.mid属性
pandas.IntervalIndex.mid
961-2、参数

        无

961-3、功能

        用于返回IntervalIndex中每个区间的中点,该属性对每个在IntervalIndex中定义的区间计算中间值,结果是一个Float64Index或Int64Index,具体取决于区间的类型。

961-4、返回值

        返回值是一个Float64Index,它包含每个区间的中间值,这些中间值是通过计算每个区间的下限和上限之间的平均值得到的。具体来说,对于每个区间[a, b],中点计算公式为(a + b) / 2。

961-5、说明

        无

961-6、用法
961-6-1、数据准备
961-6-2、代码示例
# 961、pandas.IntervalIndex.mid属性
import pandas as pd
# 创建一个IntervalIndex
interval_index = pd.IntervalIndex.from_tuples([(1, 3), (4, 6), (7, 9)])
# 获取每个区间的中点
mid_points = interval_index.mid
print(mid_points)
961-6-3、结果输出
# 961、pandas.IntervalIndex.mid属性
# Index([2.0, 5.0, 8.0], dtype='float64')
962、pandas.IntervalIndex.length属性
962-1、语法
# 962、pandas.IntervalIndex.length属性
pandas.IntervalIndex.length
962-2、参数

        无

962-3、功能

        计算IntervalIndex中每个区间的长度。

962-4、返回值

        返回一个Int64Index对象,包含每个区间的长度。

962-5、说明

        无

962-6、用法
962-6-1、数据准备
962-6-2、代码示例
# 962、pandas.IntervalIndex.length属性
import pandas as pd
# 创建一个IntervalIndex
intervals = pd.IntervalIndex.from_tuples([(0, 1), (1, 3), (3, 5)])
# 计算区间的长度
lengths = intervals.length
print(lengths)
962-6-3、结果输出
# 962、pandas.IntervalIndex.length属性
# Index([1, 2, 2], dtype='int64')
963、pandas.IntervalIndex.get_loc方法
963-1、语法
# 963、pandas.IntervalIndex.get_loc方法
pandas.IntervalIndex.get_loc(key)
Get integer location, slice or boolean mask for requested label.Parameters:
key
label
Returns:
int if unique index, slice if monotonic index, else mask
963-2、参数

963-2-1、key(必须)表示要查找的区间,可以是一个Interval对象。

963-3、功能

        用于查找指定的区间在IntervalIndex中的位置(索引),该方法可以帮助你快速确定某个区间是否存在于IntervalIndex中,以及它的位置。

963-4、返回值

        返回指定区间的整数索引,如果区间不存在,则会抛出KeyError。

963-5、说明

        无

963-6、用法
963-6-1、数据准备
963-6-2、代码示例
# 963、pandas.IntervalIndex.get_loc方法
import pandas as pd
# 创建一个IntervalIndex
intervals = pd.IntervalIndex.from_tuples([(0, 1), (1, 3), (3, 5)])
# 使用get_loc查找区间的位置
loc1 = intervals.get_loc(pd.Interval(0, 1))
loc2 = intervals.get_loc(pd.Interval(1, 3))
print(loc1)
print(loc2)
963-6-3、结果输出
# 963、pandas.IntervalIndex.get_loc方法
# 0
# 1
964、pandas.IntervalIndex.get_indexer方法
964-1、语法
# 964、pandas.IntervalIndex.get_indexer方法
pandas.IntervalIndex.get_indexer(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index.The indexer should be then used as an input to ndarray.take to align the current data to the new index.Parameters:
targetIndex
method{None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
default: exact matches only.pad / ffill: find the PREVIOUS index value if no exact match.backfill / bfill: use NEXT index value if no exact matchnearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.limitint, optional
Maximum number of consecutive labels in target to match for inexact matches.toleranceoptional
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance.Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.Returns:
np.ndarray[np.intp]
Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.NotesReturns -1 for unmatched values, for further explanation see the example below.
964-2、参数

964-2-1、target(必须)array-like,一个包含要查找的值的数组或序列,这些值可以是区间的边界或其他数值。

964-2-2、method(可选,默认值为None)str,指定查找方法,可选值包括:

  • 'pad'或'ffill':查找第一个小于或等于目标值的区间(向前查找)。
  • 'backfill'或'bfill':查找第一个大于目标值的区间(向后查找)。

964-2-3、limit(可选,默认值为None)int,限制结果中可以返回的匹配数量,如果设置了这个参数,返回的位置索引将受到限制。

964-2-4、tolerance(可选,默认值为None)array-like,指定容忍度,以控制可以接受的值范围,如果提供了这个参数,则只有在区间边界内的值才会被视为匹配。

964-3、功能

        检索target中每个元素在IntervalIndex中的索引位置,它能够处理不同的查找策略(如精确匹配、向前查找和向后查找)。

964-4、返回值

        返回一个一维的NumPy数组,其中包含target中每个值在IntervalIndex中的对应索引,如果某个值在区间中没有找到,则返回-1。

964-5、说明

        无

964-6、用法
964-6-1、数据准备
964-6-2、代码示例
# 964、pandas.IntervalIndex.get_indexer方法
import pandas as pd
index = pd.Index(['c', 'a', 'b'])
arr1 = index.get_indexer(['a', 'b', 'x'])
print(arr1)
964-6-3、结果输出
# 964、pandas.IntervalIndex.get_indexer方法
# [ 1  2 -1]
965、pandas.MultiIndex
965-1、语法
# 965、pandas.MultiIndex类
class pandas.MultiIndex(levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity=True)
A multi-level, or hierarchical, index object for pandas objects.Parameters:
levels
sequence of arrays
The unique labels for each level.codes
sequence of arrays
Integers for each level designating which label at each location.sortorder
optional int
Level of sortedness (must be lexicographically sorted by that level).names
optional sequence of objects
Names for each of the index levels. (name is accepted for compat).copy
bool, default False
Copy the meta-data.verify_integrity
bool, default True
Check that the levels/codes are consistent and valid.See alsoMultiIndex.from_arrays
Convert list of arrays to MultiIndex.MultiIndex.from_product
Create a MultiIndex from the cartesian product of iterables.MultiIndex.from_tuples
Convert list of tuples to a MultiIndex.MultiIndex.from_frame
Make a MultiIndex from a DataFrame.Index
The base pandas Index type.NotesSee the user guide for more.
965-2、参数

965-2-1、levels(可选,默认值为None)list,一个包含多个层级(levels)列表的集合,每个层级包含该层的所有唯一值,这些值在创建MultiIndex时定义了每一层的内容。

965-2-2、codes(可选,默认值为None)list,一个包含整数列表的集合,表示各个层级的索引位置,长度应与levels参数对应,指定每个层级中对应值的位置。

965-2-3、sortorder(可选,默认值为None)int,指定索引的排序顺序,可以是一个整数,表示根据哪个层级进行排序。

965-2-4、names(可选,默认值为None)list,为MultiIndex的每一层级指定名称,可以帮助在访问或操作数据时提高可读性,默认情况下,层级没有名称。

965-2-5、dtype(可选,默认值为None)数据类型,指定索引的数据类型,默认情况下会根据提供的数据和层级自动推断。

965-2-6、copy(可选,默认值为False)bool,是否复制输入数据,默认值为False,如果为True,将强制复制数据。

965-2-7、name(可选,默认值为None)string,为整个索引设置一个通用名称(单一名称),当MultiIndex作为某一列的索引时会用到。

965-2-8、verify_integrity(可选,默认值为True)bool,是否验证数组的完整性,确保不含有重复的条目。

965-3、功能

        支持多重层级索引,允许在同一数据结构中组织更多的层次信息,对于处理复杂的数据,如时间序列或分组数据,特别有用。

965-4、返回值

        返回一个pandas.MultiIndex对象,可以将其直接用于pandas的DataFrame或Series中作为索引,其提供的方法和属性使得对多层结构数据的操作非常灵活和高效,包括切片、合并、重设索引等。

965-5、说明

        无

965-6、用法
965-6-1、数据准备
965-6-2、代码示例
# 965、pandas.MultiIndex类
import pandas as pd
# 创建多个层级的索引
levels = [['A', 'B'], [1, 2]]
codes = [[0, 0, 1, 1], [0, 1, 0, 1]]  # A1, A2, B1, B2
# 创建MultiIndex
multi_index = pd.MultiIndex(levels=levels, codes=codes, names=['Letter', 'Number'])
# 创建一个DataFrame,并使用MultiIndex
data = {'Value': [10, 20, 30, 40]}
df = pd.DataFrame(data, index=multi_index)
# 显示DataFrame
print("初始DataFrame:")
print(df)
# 选取A的所有数据
print("\n选择'A'的数据:")
print(df.loc['A'])
# 选择特定层级的值,例如'B'和1
print("\n选择'B'1的数据:")
print(df.loc[('B', 1)])
# 重设索引
df_reset = df.reset_index()
print("\n重设索引后的DataFrame:")
print(df_reset)
# 通过层级进行分组并计算均值
grouped = df.groupby(level='Letter').mean()
print("\n按字母分组计算均值:")
print(grouped)
965-6-3、结果输出
# 965、pandas.MultiIndex类
# 初始DataFrame:
#                Value
# Letter Number       
# A      1          10
#        2          20
# B      1          30
#        2          40
# 
# 选择'A'的数据:
#         Value
# Number       
# 1          10
# 2          20
# 
# 选择'B'1的数据:
# Value    30
# Name: (B, 1), dtype: int64
# 
# 重设索引后的DataFrame:
#   Letter  Number  Value
# 0      A       1     10
# 1      A       2     20
# 2      B       1     30
# 3      B       2     40
# 
# 按字母分组计算均值:
#         Value
# Letter       
# A        15.0
# B        35.0

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页
http://www.yayakq.cn/news/556643/

相关文章:

  • 如何做pc网站适配网站建设教程软件下载
  • 自己做网站的费用网站项目策划书方案
  • 云主机多个网站智能响应式网站建设
  • 怎么建个公司网站网站流量被用完了
  • 电子商务网站建设教学力软框架做网站
  • 常德建设企业网站找程序员代写程序
  • 网站一年域名费用多少钱高清的广州网站建设
  • 交互网站是什么东莞网站制作及推广价格
  • 如何做网站模版海贼王网页设计素材
  • 做一个付费网站多少钱企业建设网站的一般过程
  • 室内设计可以做网站吗wordpress dux5.3
  • 台州网站推广技巧付费洛阳青峰网络科技有限公司
  • 做网站最好用的软件可以做试卷的网站英语怎么说
  • 苏州建筑类网站建设wordpress获取当前子分类
  • 网站设计是怎么设计的php主做哪种类型网站
  • 第一次开票网站建设怎么开做网站的生产方式
  • 神奇的工作室最新网站wordpress 导入的模板
  • 深圳网站建设lxhd企业展厅设计图片欣赏
  • 怎么做网站受众分析wordpress会员注册为
  • 企业网站设计需要了解网站推广计划包括哪些
  • 做设计的素材网站有哪些成都网站建设有名的
  • 一般做企业网站需要什么网站开发后期要解决的问题
  • 创业公司做网站网站专题制作
  • 青岛网站建设方案公司太原学网站开发的学校
  • 沈阳网站建设开发秦皇岛有能做网页的地方吗
  • 绵阳低价网站建设上海seo公司排名
  • 站长之家网站查询做一家新闻媒体网站多少钱
  • 免费网站空间申请百度seo可能消失
  • 做简历的网站有哪些小程序开发平台免费
  • 怎么去做网站wordpress目录 读写权限设置