当前位置: 首页 > news >正文

网站开发开源软件linux网站备份

网站开发开源软件,linux网站备份,网站定制开发前期要有一定的规划,做外贸的阿里巴巴网站是哪个好数据: 训练过程图 算法简介: UNet网络是分割任务中的一个经典模型,因其整体形状与"U"相似而得名,"U"形结构有助于捕获多尺度信息,并促进了特征的精确重建,该网络整体由编码器,解码器以及跳跃连接三部分组成。 编码器由…

数据:
在这里插入图片描述
在这里插入图片描述
训练过程图
在这里插入图片描述
算法简介:
UNet网络是分割任务中的一个经典模型,因其整体形状与"U"相似而得名,"U"形结构有助于捕获多尺度信息,并促进了特征的精确重建,该网络整体由编码器,解码器以及跳跃连接三部分组成。
编码器由一系列卷积层(Convenlution)和池化层(Polling) 组成,用于逐步降低输入图像的空间尺寸和通道数,同时提取图像的高层特征信息:
解码器由一系列上采样层和卷积层组成,用于逐步还原特征图的空间尺寸和通道细节信息。
在编码器和解码器通过跳跃连接将编码器的某一层的特征图与对应的解码器层的特征图连接起来。正是因为"U"结构的有效性,UNet网络被许多学者沿用至今。
UNet网络的基本块由两个卷积和ReLu激活函数构成,使用3x3的卷积核尺寸来捕捉上下文信息。网络的左侧部分构成UNet的编码器,负责从输入影像中提取特征信息。
在UNet的解码阶段,解码基本块与编码阶段的基本块是一一对应的。从瓶颈层出发,通过上采样将特征图放大,然后经过解码基本块进行特征信息的解码重建。
此外跳跃连接(copyandcrop)的设计允许将编码阶段提取的特征信息传递到解码基本块中,有助于进一步恢复细节信息。整个过程重复进行四次,完成对病灶区域的分割。
在这里插入图片描述

运行视频:

【MATLAB实战】基于UNet的肺结节的检测

代码:

function expName = unet(expName, size, encoderDepth, filters, batchsize, epochs, useDataAugmentation, L2Reg, lr, ...gradientclipping, path, splits, folders, savePredictionsFolder, classNames, labelIDs, valPat, isMAT )% 创建unet 网络
numClasses  = length(classNames);
lgraph = unetLayers(size,numClasses,'EncoderDepth',encoderDepth, 'NumFirstEncoderFilters', filters)%%     TRAIN       %%
% 加载训练集
if isMAT == trueimdsTrain = imageDatastore(strcat(path, '/', splits(1), '/', folders(1)), 'FileExtensions','.mat', 'ReadFcn', @loadMAT);
elseimdsTrain = imageDatastore(strcat(path, '/', splits(1), '/', folders(1)));
endpxdsTrain = pixelLabelDatastore(strcat(path, '/', splits(1), '/', folders(2)),classNames,labelIDs);tbl = countEachLabel(pxdsTrain)imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;medFreqClassWeights = median(imageFreq) ./ imageFreqlayer_to_add = [pixelClassificationLayer('Classes',classNames,'ClassWeights',medFreqClassWeights,'Name','Segmentation-Layer')];
% 替换层
lgraph = replaceLayer(lgraph,'Segmentation-Layer',layer_to_add);
Display the network.
analyzeNetwork(lgraph)% 创建 datastore 
if useDataAugmentation == false % 不适用图像增强
%     testpxds = pixelLabelDatastore(testlabelDir,classNames,labelIDs);ds = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
else % 图像增强augmenter = imageDataAugmenter('RandXReflection',true, 'RandYReflection',true)%,'RandRotation',[-10 10], 'RandXTranslation', [-5 5], 'RandYTranslation', [-5 5]);  ds = pixelLabelImageDatastore(imdsTrain,pxdsTrain, 'DataAugmentation', augmenter);
end % 加载验证集.
if isMAT==trueimdsVal = imageDatastore(strcat(path, '/', splits(3), '/', folders(1)), 'FileExtensions','.mat', 'ReadFcn', @loadMAT);
elseimdsVal = imageDatastore(strcat(path, '/', splits(3), '/', folders(1)));
end
pxdsVal = pixelLabelDatastore(strcat(path, '/', splits(3), '/', folders(2)),classNames,labelIDs);  
valData = pixelLabelImageDatastore(imdsVal, pxdsVal); 
valFreq = floor(length(ds.Images)/batchsize)% 设置 OPTIONS
options = trainingOptions(...'adam', ...    ... 'rmsprop' ... 'sgdm','Momentum', 0.9, ...'InitialLearnRate',lr, ...... 'LearnRateSchedule','piecewise', ...... 'LearnRateDropFactor', dropfactor, ...... 'LearnRateDropPeriod', 1, ...'MaxEpochs',epochs, ...'VerboseFrequency',10, ...'MiniBatchSize' , batchsize, ...'Plots','training-progress', ...'L2Regularization',L2Reg, ...,'ValidationData',valData, ...,'ValidationFrequency', valFreq,...,'ValidationPatience', valPat,...,... 'GradientThresholdMethod','l2norm',...... 'GradientThreshold',gradientclipping, ...'Shuffle','every-epoch', ...'ExecutionEnvironment', 'gpu');% 训练网络
tic;
[net,info] = trainNetwork(ds,lgraph,options)
traintime=toc;
save net.mat net;
%%         TEST       %%
% 加载测试集
if isMAT==trueimdsTest = imageDatastore(strcat(path, '/', splits(2), '/', folders(1)), 'FileExtensions','.mat', 'ReadFcn', @loadMAT);
elseimdsTest = imageDatastore(strcat(path, '/', splits(2), '/', folders(1)));
end
pxdsTest = pixelLabelDatastore(strcat(path, '/', splits(2), '/', folders(2)),classNames,labelIDs);% 在测试映像上运行网络。预测标签作为pixelLabelDatastore返回。
tic
pxdsResults = semanticseg(imdsTest,net, 'MiniBatchSize',batchsize,"WriteLocation", savePredictionsFolder);
toc% 计算混淆矩阵和分割度量(根据实际情况评估预测结果)
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest)
metrics.ClassMetrics
metrics.NormalizedConfusionMatrix
metrics.ConfusionMatrix
metrics.DataSetMetrics
% 设置保存目录mkdir(['ExpUNet/',expName]);
% logs 保存
save(['ExpUNet/',expName, '/results'])
% 保存评价指标
writetable(metrics.DataSetMetrics,['ExpUNet/',expName,'/dataset.csv'])
writetable(metrics.ClassMetrics, ['ExpUNet/',expName,'/classmetrics.csv'])
writetable(metrics.ConfusionMatrix, ['ExpUNet/',expName,'/confusionmatrix.csv'])
writetable(metrics.NormalizedConfusionMatrix, ['ExpUNet/',expName,'/normconfusionmatrix.csv'])
% 测试 6 张图像 结果保存
saveTestImages(net, imdsTest, pxdsTest,classNames, ['ExpUNet/',expName,'/ejemplos.png'], labelIDs, isMAT)endfunction final_matrix = loadMAT(filename)load(filename)
end

代码链接:https://download.csdn.net/download/qq_45047246/89565243

http://www.yayakq.cn/news/130818/

相关文章:

  • 网站在线服务视频号视频下载助手app
  • 市场营销论文3000字杭州百家号优化
  • 汕头站谈谈你认为的网络营销是什么
  • 购物网站排名第一官方网站建设条件
  • world做网站怎么做连接网页制作流程及详细步骤
  • 网站建设及政务公开工作总结松江泖港网站建设
  • 广州建设交易中心网站网站制作标准
  • 邢台网站网页设计霍邱县住房和城乡建设局网站
  • php做网站需要学的东西食品网站设计方案
  • 柳州网站制作服务商电子商务网站建设实训室简介
  • 网站做管理员消息推送荣耀官网首页官方
  • 阜南网站建设公司濮阳全员核酸检测
  • 服务器 网站 app互联网广告投放平台加盟
  • 怎么用网站做远控wordpress微官网主题下载
  • 广西贵港建设集团有限公司网站衡水提供网站制作公司电话
  • 做版面的网站大航母网站建设与服务
  • 商业网站模板制作与开发建设银行光明支行网站
  • 做中英文网站做网站要几个人 要多少钱
  • 找个男做那个视频网站好山东网站建设市场
  • 热点 做网站和营销 我只服他权重高的博客网站
  • 网站内页模板ui做套网站多少钱
  • 网站做优化需要哪些后台信息网站建站公司排名
  • 百度网站的优缺点05网英语课课练答案
  • 网站备案一个主体网站文章排序
  • 网站排名软件利搜怎么样插画培训班学费多少
  • 临海企业网站设计安卓app开发实验报告
  • seo做的比较好的网站的几个特征一个人做网站要多久
  • 怎么提交公司网站wordpress查看jquery版本号
  • 小程序发布流程池州网站优化公司
  • 在凡科建设网站的流程最近几天新闻大事