个人网站审批江西中恒建设集团有限公司网站
深度强化学习(九)(改进策略梯度)
一.带基线的策略梯度方法
Theorem:
设 b b b 是任意的函数, b b b与 A A A无关。把 b b b 作为动作价值函数 Q π ( S , A ) Q_\pi(S, A) Qπ(S,A) 的基线, 对策略梯度没有影响:
∇ θ J ( θ ) = E S [ E A ∼ π ( ⋅ ∣ S ; θ ) [ ( Q π ( S , A ) − b ) ⋅ ∇ θ ln π ( A ∣ S ; θ ) ] ] . \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\mathbb{E}_S\left[\mathbb{E}_{A \sim \pi(\cdot \mid S ; \boldsymbol{\theta})}\left[\left(Q_\pi(S, A)-b\right) \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(A \mid S ; \boldsymbol{\theta})\right]\right] . ∇θJ(θ)=ES[EA∼π(⋅∣S;θ)[(Qπ(S,A)−b)⋅∇θlnπ(A∣S;θ)]].
proof:
E S [ E A ∼ π ( ⋅ ∣ S ; θ ) [ b ⋅ ∇ θ ln π ( A ∣ S ; θ ) ] ] = E A , S [ b ⋅ ∇ θ ln π ( A ∣ S ; θ ) ] = ∑ A , S b ⋅ ∇ θ π ( a ∣ s ; θ ) p ( a , s ) π ( a ∣ s ; θ ) = ∑ A , S b ⋅ ∇ θ π ( a ∣ s ; θ ) ⋅ p ( s ) = ∑ S [ b ⋅ p ( s ) ∑ A ∇ θ π ( a ∣ s ; θ ) ] = ∑ S [ b ⋅ p ( s ) ∇ θ ∑ A π ( a ∣ s ; θ ) ] = ∑ S [ b ⋅ p ( s ) ∇ θ 1 ] = 0 \begin{aligned} \Bbb E_{S}[\Bbb E_{A\sim\pi(\cdot\mid S;\boldsymbol \theta)}[b\cdot\nabla_{\boldsymbol \theta}\ln \pi(A\mid S;\boldsymbol \theta)]]&=\Bbb E_{A,S}[b\cdot \nabla_{\boldsymbol \theta}\ln \pi(A\mid S;\boldsymbol \theta)]\\ &=\sum_{A,S}b\cdot\nabla_{\boldsymbol \theta}\pi(a\mid s;\boldsymbol \theta)\frac{p(a,s)}{\pi(a\mid s;\boldsymbol \theta)}\\ &=\sum_{A,S}b\cdot\nabla_{\boldsymbol \theta}\pi(a\mid s;\boldsymbol \theta)\cdot p(s)\\ &=\sum_{S}[b\cdot p(s)\sum_{A}\nabla_{\boldsymbol \theta}\pi(a\mid s;\boldsymbol \theta)]\\ &=\sum_{S}[b\cdot p(s)\nabla_{\boldsymbol \theta}\sum_{A}\pi(a\mid s;\boldsymbol \theta)]\\ &=\sum_{S}[b\cdot p(s)\nabla_{\boldsymbol \theta}1]\\ &=0 \end{aligned} ES[EA∼π(⋅∣S;θ)[b⋅∇θlnπ(A∣S;θ)]]=EA,S[b⋅∇θlnπ(A∣S;θ)]=A,S∑b⋅∇θπ(a∣s;θ)π(a∣s;θ)p(a,s)=A,S∑b⋅∇θπ(a∣s;θ)⋅p(s)=S∑[b⋅p(s)A∑∇θπ(a∣s;θ)]=S∑[b⋅p(s)∇θA∑π(a∣s;θ)]=S∑[b⋅p(s)∇θ1]=0
所以策略梯度 ∇ θ J ( θ ) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) ∇θJ(θ) 可以近似为下面的随机梯度:
g b ( s , a ; θ ) = [ Q π ( s , a ) − b ] ⋅ ∇ θ ln π ( a ∣ s ; θ ) \boldsymbol{g}_b(s, a ; \boldsymbol{\theta})=\left[Q_\pi(s, a)-b\right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a \mid s ; \boldsymbol{\theta}) gb(s,a;θ)=[Qπ(s,a)−b]⋅∇θlnπ(a∣s;θ)
无论 b b b取何值, E A , S [ g b ( s , a ; θ ) ] \Bbb E_{A,S}[\boldsymbol g_{b}(s,a;\boldsymbol \theta)] EA,S[gb(s,a;θ)]都是策略梯度的无篇估计,但是随着 b b b取值的变化,方差会出现变化。
V a r = E A , S [ ( g b ( S , A ; θ ) − ∇ θ J ( θ ) ) 2 ] = E A , S [ g b ( S , A ; θ ) 2 ] − [ ∇ θ J ( θ ) ] 2 = E A , S [ ( Q π ( S , A ) − b ) 2 ∇ θ 2 ln π ( A ∣ S ; θ ) ] − [ ∇ θ J ( θ ) ] 2 \begin{aligned} \Bbb{Var}&=\Bbb E_{A,S}[(\boldsymbol{g}_b(S, A ; \boldsymbol{\theta})-\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}))^2]\\ &=\Bbb E_{A,S}[\boldsymbol{g}_b(S, A ; \boldsymbol{\theta})^2]-[\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})]^2\\ &=\Bbb E_{A,S}[(Q_{\pi}(S,A)-b)^2\nabla_{\boldsymbol{\theta}}^2\ln \pi(A\mid S;\boldsymbol{\theta})]-[\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})]^2\\ \end{aligned} Var=EA,S[(gb(S,A;θ)−∇θJ(θ))2]=EA,S[gb(S,A;θ)2]−[∇θJ(θ)]2=EA,S[(Qπ(S,A)−b)2∇θ2lnπ(A∣S;θ)]−[∇θJ(θ)]2
由于 ∇ θ J ( θ ) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) ∇θJ(θ)是与 b b b无关的常数,所以仅需极小化 E A , S [ ( Q π ( S , A ) − b ) 2 ∇ θ 2 ln π ( A ∣ S ; θ ) ] \Bbb E_{A,S}[(Q_{\pi}(S,A)-b)^2\nabla_{\boldsymbol{\theta}}^2\ln \pi(A\mid S;\boldsymbol{\theta})] EA,S[(Qπ(S,A)−b)2∇θ2lnπ(A∣S;θ)]
E A , S [ ( Q π ( S , A ) − b ) 2 ∇ θ 2 ln π ( A ∣ S ; θ ) ] = E S [ E A ∼ π ( A ∣ S ; θ ) [ ( Q π ( S , A ) − b ) 2 ∇ θ 2 ln π ( A ∣ S ; θ ) ] ] = E S [ E A ∼ ∇ θ 2 π ( A ∣ S ; θ ) π ( A ∣ S ; θ ) [ ( Q π ( S , A ) − b ) 2 ] ] \begin{aligned} \Bbb E_{A,S}[(Q_{\pi}(S,A)-b)^2\nabla_{\boldsymbol{\theta}}^2\ln \pi(A\mid S;\boldsymbol{\theta})]&=\Bbb E_{S}[\Bbb E_{A\sim \pi(A\mid S;\boldsymbol \theta)}[(Q_{\pi}(S,A)-b)^2\nabla_{\boldsymbol \theta}^2\ln\pi(A\mid S;\boldsymbol \theta)]]\\ &=\Bbb E_{S}[\Bbb E_{A\sim \frac{\nabla_{\boldsymbol \theta}^2\pi(A\mid S;\boldsymbol \theta)}{\pi(A\mid S;\boldsymbol \theta)}}[(Q_{\pi}(S,A)-b)^2]] \end{aligned} EA,S[(Qπ(S,A)−b)2∇θ2lnπ(A∣S;θ)]=ES[EA∼π(A∣S;θ)[(Qπ(S,A)−b)2∇θ2lnπ(A∣S;θ)]]=ES[EA∼π(A∣S;θ)∇θ2π(A∣S;θ)[(Qπ(S,A)−b)2]]
所以要最小化方差,令 A ∼ ∇ θ 2 π ( A ∣ S ; θ ) π ( A ∣ S ; θ ) A\sim \frac{\nabla_{\boldsymbol \theta}^2\pi(A\mid S;\boldsymbol \theta)}{\pi(A\mid S;\boldsymbol \theta)} A∼π(A∣S;θ)∇θ2π(A∣S;θ)为N-K密度,则
b = E A ∼ ∇ θ 2 π ( A ∣ S ; θ ) π ( A ∣ S ; θ ) [ Q π ( S , A ) ] / E A ∼ ∇ θ 2 π ( A ∣ S ; θ ) π ( A ∣ S ; θ ) [ ] = E A ∼ π θ [ ∇ θ log π θ ( A ∣ S ) T ∇ θ log π ( A ∣ S ) Q ( S , A ) ] E A ∼ π θ [ ∇ θ log π θ ( A ∣ S ) T ∇ θ log π θ ( A ∣ S ) ] \begin{aligned} b&=\Bbb E_{A\sim \frac{\nabla_{\boldsymbol \theta}^2\pi(A\mid S;\boldsymbol \theta)}{\pi(A\mid S;\boldsymbol \theta)}}[Q_{\pi}(S,A)]/\Bbb E_{A \sim \frac{\nabla_{\boldsymbol \theta}^2\pi(A\mid S;\boldsymbol \theta)}{\pi(A\mid S;\boldsymbol \theta)}}[]\\ &=\frac{\mathbb{E}_{A \sim \pi_\theta}\left[\nabla_\theta \log \pi_\theta(A \mid S)^T \nabla_\theta \log \pi(A \mid S) Q(S, A)\right]}{\mathbb{E}_{A \sim \pi_\theta}\left[\nabla_\theta \log \pi_\theta(A \mid S)^T \nabla_\theta \log \pi_\theta(A \mid S)\right]} \end{aligned} b=EA∼π(A∣S;θ)∇θ2π(A∣S;θ)[Qπ(S,A)]/EA∼π(A∣S;θ)∇θ2π(A∣S;θ)[]=EA∼πθ[∇θlogπθ(A∣S)T∇θlogπθ(A∣S)]EA∼πθ[∇θlogπθ(A∣S)T∇θlogπ(A∣S)Q(S,A)]
,我们使用 b = E A ∼ π ( A ∣ S ) [ Q π ( S , A ) ] = V π ( S ) b=\Bbb E_{A\sim \pi(A\mid S)}[Q_{\pi}(S,A)]=V_\pi(S) b=EA∼π(A∣S)[Qπ(S,A)]=Vπ(S)作为近似代替。
我们使用状态价值 V π ( s ) V_\pi(s) Vπ(s) 作基线,得到策略梯度的一个无偏估计:
g ( s , a ; θ ) = [ Q π ( s , a ) − V π ( s ) ] ⋅ ∇ θ ln π ( a ∣ s ; θ ) . \boldsymbol{g}(s, a ; \boldsymbol{\theta})=\left[Q_\pi(s, a)-V_\pi(s)\right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a \mid s ; \boldsymbol{\theta}) . g(s,a;θ)=[Qπ(s,a)−Vπ(s)]⋅∇θlnπ(a∣s;θ).
REINFORCE使用实际观测的回报 u u u 来代替动作价值 Q π ( s , a ) Q_\pi(s, a) Qπ(s,a) 。此处我们同样用 u u u 代替 Q π ( s , a ) Q_\pi(s, a) Qπ(s,a) 。此外, 我们还用一个神经网络 v ( s ; w ) v(s ; \boldsymbol{w}) v(s;w) 近似状态价值函数 V π ( s ) V_\pi(s) Vπ(s) 。这样一来, g ( s , a ; θ ) \boldsymbol{g}(s, a ; \boldsymbol{\theta}) g(s,a;θ) 就被近似成了:
g ~ ( s , a ; θ ) = [ u − v ( s ; w ) ] ⋅ ∇ θ ln π ( a ∣ s ; θ ) . \tilde{\boldsymbol{g}}(s, a ; \boldsymbol{\theta})=[u-v(s ; \boldsymbol{w})] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a \mid s ; \boldsymbol{\theta}) . g~(s,a;θ)=[u−v(s;w)]⋅∇θlnπ(a∣s;θ).
可以用 g ~ ( s , a ; θ ) \tilde{\boldsymbol{g}}(s, a ; \boldsymbol{\theta}) g~(s,a;θ) 作为策略梯度 ∇ θ J ( θ ) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) ∇θJ(θ) 的近似, 更新策略网络参数:
θ ← θ + β ⋅ g ~ ( s , a ; θ ) \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\beta \cdot \tilde{\boldsymbol{g}}(s, a ; \boldsymbol{\theta}) θ←θ+β⋅g~(s,a;θ)
训练价值网络的方法是回归 (regression)。回忆一下, 状态价值是回报的期望:
V π ( s t ) = E [ U t ∣ S t = s t ] , V_\pi\left(s_t\right)=\mathbb{E}\left[U_t \mid S_t=s_t\right], Vπ(st)=E[Ut∣St=st],
期望消掉了动作 A t , A t + 1 , ⋯ , A n A_t, A_{t+1}, \cdots, A_n At,At+1,⋯,An 和状态 S t + 1 , ⋯ , S n S_{t+1}, \cdots, S_n St+1,⋯,Sn 训练价值网络的目的是让 v ( s t ; w ) v\left(s_t ; \boldsymbol{w}\right) v(st;w)拟合 V π ( s t ) V_\pi\left(s_t\right) Vπ(st), 即拟合 u t u_t ut 的期望。定义
损失失函数:
L ( w ) = 1 2 n ∑ t = 1 n [ v ( s t ; w ) − u t ] 2 . L(\boldsymbol{w})=\frac{1}{2 n} \sum_{t=1}^n\left[v\left(s_t ; \boldsymbol{w}\right)-u_t\right]^2 . L(w)=2n1t=1∑n[v(st;w)−ut]2.
设 v ^ t = v ( s t ; w ) \widehat{v}_t=v\left(s_t ; \boldsymbol{w}\right) v t=v(st;w) 。损失函数的梯度是:
∇ w L ( w ) = 1 n ∑ t = 1 n ( v ^ t − u t ) ⋅ ∇ w v ( s t ; w ) . \nabla_{\boldsymbol{w}} L(\boldsymbol{w})=\frac{1}{n} \sum_{t=1}^n\left(\widehat{v}_t-u_t\right) \cdot \nabla_{\boldsymbol{w}} v\left(s_t ; \boldsymbol{w}\right) . ∇wL(w)=n1t=1∑n(v t−ut)⋅∇wv(st;w).
做一次梯度下降更新 w \boldsymbol{w} w :
w ← w − α ⋅ ∇ w L ( w ) . \boldsymbol{w} \leftarrow \boldsymbol{w}-\alpha \cdot \nabla_{\boldsymbol{w}} L(\boldsymbol{w}) . w←w−α⋅∇wL(w).
接下来的训练过程与 r e i n f o r c e reinforce reinforce一样。
二.Advantage Actor-Critic (A2C)
训练价值网络:reinforce使用蒙特卡洛方法直接求出了所有 u t u_t ut,从而可以直接训练 v π ( s ) v_{\pi}(s) vπ(s)而在 a c t o r − c r i t i c actor-critic actor−critic中并未使用蒙特卡洛方法,我们依据贝尔曼方程进行自举训练。
V π ( s t ) = E A t , S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ∣ S t = s t ] = E A t [ E S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ∣ S t = s t , A t ] ∣ S t = s t ] \begin{aligned} V_\pi\left(s_t\right)&=\mathbb{E}_{A_t, S_{t+1}}\left[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right) \mid S_t=s_t\right]\\ &= \Bbb E_{A_t}[\Bbb E_{S_{t+1}}[R_{t}+\gamma \cdot V_{\pi}(S_{t+1})\mid S_t=s_t,A_t] \mid S_t=s_t] \end{aligned} Vπ(st)=EAt,St+1[Rt+γ⋅Vπ(St+1)∣St=st]=EAt[ESt+1[Rt+γ⋅Vπ(St+1)∣St=st,At]∣St=st]
从初始状态 s t s_t st出发,依据策略 π ( A ∣ S ) \pi(A\mid S) π(A∣S)选取动作 a t a_t at,再依据状态转移概率 p ( S t + 1 ∣ A t , S t ) p(S_{t+1}\mid A_t,S_t) p(St+1∣At,St),选中下一刻状态 s t + 1 s_{t+1} st+1,得出 r t r_{t} rt.
则 y t = r t + v π ( s t + 1 ; w ) y_t=r_t+v_{\pi}(s_{t+1};\boldsymbol{w}) yt=rt+vπ(st+1;w)
具体这样更新价值网络参数 w \boldsymbol{w} w 。定义损失函数
L ( w ) ≜ 1 2 [ v ( s t ; w ) − y t ^ ] 2 . L(\boldsymbol{w}) \triangleq \frac{1}{2}\left[v\left(s_t ; \boldsymbol{w}\right)-\widehat{y_t}\right]^2 . L(w)≜21[v(st;w)−yt ]2.
设 v ^ t ≜ v ( s t ; w ) \widehat{v}_t \triangleq v\left(s_t ; \boldsymbol{w}\right) v t≜v(st;w) 。损失函数的梯度是:
∇ w L ( w ) = ( v ^ t − y ^ t ) ⏟ TD 误差 δ t ⋅ ∇ w v ( s t ; w ) . \nabla_{\boldsymbol{w}} L(\boldsymbol{w})=\underbrace{\left(\widehat{v}_t-\widehat{y}_t\right)}_{\text {TD 误差 } \delta_t} \cdot \nabla_{\boldsymbol{w}} v\left(s_t ; \boldsymbol{w}\right) . ∇wL(w)=TD 误差 δt (v t−y t)⋅∇wv(st;w).
定义 TD 误差为 δ t ≜ v ^ t − y ^ t \delta_t \triangleq \widehat{v}_t-\widehat{y}_t δt≜v t−y t 。做一轮梯度下降更新 w : \boldsymbol{w}: w:
w ← w − α ⋅ δ t ⋅ ∇ w v ( s t ; w ) . \boldsymbol{w} \leftarrow \boldsymbol{w}-\alpha \cdot \delta_t \cdot \nabla_{\boldsymbol{w}} v\left(s_t ; \boldsymbol{w}\right) . w←w−α⋅δt⋅∇wv(st;w).
训练策略网络:贝尔曼公式:
Q π ( s t , a t ) = E S t + 1 ∼ p ( ⋅ ∣ s t , a t ) [ R t + γ ⋅ V π ( S t + 1 ) ] . Q_\pi\left(s_t, a_t\right)=\mathbb{E}_{S_{t+1} \sim p\left(\cdot \mid s_t, a_t\right)}\left[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right)\right] . Qπ(st,at)=ESt+1∼p(⋅∣st,at)[Rt+γ⋅Vπ(St+1)].
把近似策略梯度 g ( s t , a t ; θ ) \boldsymbol{g}\left(s_t, a_t ; \boldsymbol{\theta}\right) g(st,at;θ) 中的 Q π ( s t , a t ) Q_\pi\left(s_t, a_t\right) Qπ(st,at) 替换成上面的期望, 得到:
g ( s t , a t ; θ ) = [ Q π ( s t , a t ) − V π ( s t ) ] ⋅ ∇ θ ln π ( a t ∣ s t ; θ ) = [ E S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ] − V π ( s t ) ] ⋅ ∇ θ ln π ( a t ∣ s t ; θ ) . \begin{aligned} \boldsymbol{g}\left(s_t, a_t ; \boldsymbol{\theta}\right) & =\left[Q_\pi\left(s_t, a_t\right)-V_\pi\left(s_t\right)\right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_t \mid s_t ; \boldsymbol{\theta}\right) \\ & =\left[\mathbb{E}_{S_{t+1}}\left[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right)\right]-V_\pi\left(s_t\right)\right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_t \mid s_t ; \boldsymbol{\theta}\right) . \end{aligned} g(st,at;θ)=[Qπ(st,at)−Vπ(st)]⋅∇θlnπ(at∣st;θ)=[ESt+1[Rt+γ⋅Vπ(St+1)]−Vπ(st)]⋅∇θlnπ(at∣st;θ).
当智能体执行动作 a t a_t at 之后, 环境给出新的状态 s t + 1 s_{t+1} st+1 和奖励 r t r_t rt; 利用 s t + 1 s_{t+1} st+1 和 r t r_t rt 对上面的期望做蒙特卡洛近似, 得到:
g ( s t , a t ; θ ) ≈ [ r t + γ ⋅ V π ( s t + 1 ) − V π ( s t ) ] ⋅ ∇ θ ln π ( a t ∣ s t ; θ ) . \boldsymbol{g}\left(s_t, a_t ; \boldsymbol{\theta}\right) \approx\left[r_t+\gamma \cdot V_\pi\left(s_{t+1}\right)-V_\pi\left(s_t\right)\right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_t \mid s_t ; \boldsymbol{\theta}\right) . g(st,at;θ)≈[rt+γ⋅Vπ(st+1)−Vπ(st)]⋅∇θlnπ(at∣st;θ).
进一步把状态价值函数 V π ( s ) V_\pi(s) Vπ(s) 替换成价值网络 v ( s ; w ) v(s ; \boldsymbol{w}) v(s;w), 得到:
g ~ ( s t , a t ; θ ) ≜ [ r t + γ ⋅ v ( s t + 1 ; w ) ⏟ T D 目标 y ^ t − v ( s t ; w ) ] ⋅ ∇ θ ln π ( a t ∣ s t ; θ ) \tilde{\boldsymbol{g}}\left(s_t, a_t ; \boldsymbol{\theta}\right) \triangleq[\underbrace{r_t+\gamma \cdot v\left(s_{t+1} ; \boldsymbol{w}\right)}_{\mathrm{TD} \text { 目标 } \hat{y}_t}-v\left(s_t ; \boldsymbol{w}\right)] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_t \mid s_t ; \boldsymbol{\theta}\right) g~(st,at;θ)≜[TD 目标 y^t rt+γ⋅v(st+1;w)−v(st;w)]⋅∇θlnπ(at∣st;θ)
前面定义了 TD 目标和 TD 误差:
y ^ t ≜ r t + γ ⋅ v ( s t + 1 ; w ) 和 δ t ≜ v ( s t ; w ) − y ^ t . \widehat{y}_t \triangleq r_t+\gamma \cdot v\left(s_{t+1} ; \boldsymbol{w}\right) \quad \text { 和 } \quad \delta_t \triangleq v\left(s_t ; \boldsymbol{w}\right)-\widehat{y}_t . y t≜rt+γ⋅v(st+1;w) 和 δt≜v(st;w)−y t.
因此, 可以把 g ~ \tilde{\boldsymbol{g}} g~ 写成:
g ~ ( s t , a t ; θ ) ≜ − δ t ⋅ ∇ θ ln π ( a t ∣ s t ; θ ) . \tilde{\boldsymbol{g}}\left(s_t, a_t ; \boldsymbol{\theta}\right) \triangleq-\delta_t \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_t \mid s_t ; \boldsymbol{\theta}\right) . g~(st,at;θ)≜−δt⋅∇θlnπ(at∣st;θ).
g ~ \tilde{\boldsymbol{g}} g~ 是 g \boldsymbol{g} g 的近似,所以也是策略梯度 ∇ θ J ( θ ) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) ∇θJ(θ) 的近似。用 g ~ \tilde{\boldsymbol{g}} g~ 更新策略网络参数 θ \boldsymbol{\theta} θ :
θ ← θ + β ⋅ g ~ ( s t , a t ; θ ) . \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\beta \cdot \tilde{\boldsymbol{g}}\left(s_t, a_t ; \boldsymbol{\theta}\right) . θ←θ+β⋅g~(st,at;θ).
训练流程。设当前策略网络参数是 θ now \boldsymbol{\theta}_{\text {now }} θnow , 价值网络参数是 w now \boldsymbol{w}_{\text {now }} wnow 。执行下面的步骤, 将参数更新成 θ new \theta_{\text {new }} θnew 和 w new \boldsymbol{w}_{\text {new }} wnew :
- 观测到当前状态 s t s_t st, 根据策略网络做决策: a t ∼ π ( ⋅ ∣ s t ; θ now ) a_t \sim \pi\left(\cdot \mid s_t ; \boldsymbol{\theta}_{\text {now }}\right) at∼π(⋅∣st;θnow ), 并让智能体执行动作 a t a_t at 。
- 从环境中观测到奖励 r t r_t rt 和新的状态 s t + 1 s_{t+1} st+1 。
- 让价值网络打分:
v ^ t = v ( s t ; w now ) 和 v ^ t + 1 = v ( s t + 1 ; w now ) \widehat{v}_t=v\left(s_t ; \boldsymbol{w}_{\text {now }}\right) \quad \text { 和 } \quad \widehat{v}_{t+1}=v\left(s_{t+1} ; \boldsymbol{w}_{\text {now }}\right) v t=v(st;wnow ) 和 v t+1=v(st+1;wnow ) - 计算 TD 目标和 TD 误差:
y ^ t = r t + γ ⋅ v ^ t + 1 和 δ t = v ^ t − y ^ t . \widehat{y}_t=r_t+\gamma \cdot \widehat{v}_{t+1} \quad \text { 和 } \quad \delta_t=\widehat{v}_t-\widehat{y}_t . y t=rt+γ⋅v t+1 和 δt=v t−y t. - 更新价值网络:
w new ← w now − α ⋅ δ t ⋅ ∇ w v ( s t ; w now ) . \boldsymbol{w}_{\text {new }} \leftarrow \boldsymbol{w}_{\text {now }}-\alpha \cdot \delta_t \cdot \nabla_{\boldsymbol{w}} v\left(s_t ; \boldsymbol{w}_{\text {now }}\right) . wnew ←wnow −α⋅δt⋅∇wv(st;wnow ). - 更新策略网络:
θ new ← θ now − β ⋅ δ t ⋅ ∇ θ ln π ( a t ∣ s t ; θ now ) . \boldsymbol{\theta}_{\text {new }} \leftarrow \boldsymbol{\theta}_{\text {now }}-\beta \cdot \delta_t \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_t \mid s_t ; \boldsymbol{\theta}_{\text {now }}\right) . θnew ←θnow −β⋅δt⋅∇θlnπ(at∣st;θnow ).