当前位置: 首页 > news >正文

廊坊企业网站团队阳江招聘网站

廊坊企业网站团队,阳江招聘网站,wordpress怎么seo好,三门峡网站建设推广文章目录 序言原理讲解哪些部分可转onnx 代码区0. 安装依赖1. 路径配置2. 测试数据3. 准备工作3.1迁移保存目标文件 4. model转onnx-gpu5. 测试一下是否出错以及速度5.1 测试速度是否OK5.2测试结果是否OK 6. tar 这些文件 序言 本文适合小白入门,以自己训练的句子e…

文章目录

  • 序言
  • 原理讲解
    • 哪些部分可转onnx
  • 代码区
    • 0. 安装依赖
    • 1. 路径配置
    • 2. 测试数据
    • 3. 准备工作
      • 3.1迁移保存目标文件
    • 4. model转onnx-gpu
    • 5. 测试一下是否出错以及速度
      • 5.1 测试速度是否OK
      • 5.2测试结果是否OK
    • 6. tar 这些文件

序言

本文适合小白入门,以自己训练的句子embedding模型为例,像大家展示了如何手动将sentence-transformer的模型转为onnx。

很多时候,我也不知道这段代码啥意思,但是作为应用人员,不要在意这段代码到底干了啥,除非必要。

这里不仅展示了如何转onnx,还有你部署时候,所需要的所有的文件,都打包到一个文件夹中了。

原理讲解

哪些部分可转onnx

onnx转换的时候,tokenizer部分是无法被onnx的,只有你backone模型才能进行转onnx,不要问我为啥,因为我也不知道。
我的模型使用代码如下:

from sentence_transformers import SentenceTransformer, models# 1. backone模型,这里用的bert-small
bert_model = models.Transformer("all-MiniLM-L6-v2") # 2. bert_model得到的是所有单词的向量,这些向量通过pool变成一个向量,
# 再通过normalize变成单位向量,即可进行dot,计算得到cosine相似度。
pool = models.Pooling(bert_model.get_word_embedding_dimension())
normalize = models.Normalize()# 模型组装
mymodel = SentenceTransformer(modules=[bert_model, pool, normalize])

代码区

0. 安装依赖

pip install onnx
pip install onnxruntime
pip install onnxruntime-gpu
先CPU然后GPU,不按顺序装可能会出现问题

1. 路径配置

import os# 你自己的模型
raw_model_dir = "../model/model11_all-MiniLM-L6-v2/"
abspath, raw_model_name = os.path.split(os.path.abspath(raw_model_dir))
# onnx后,所需要的文件,都转到了这个文件夹中
onnx_dir = os.path.join(abspath, raw_model_name+"_onnx-gpu/")if not os.path.exists(onnx_dir):os.mkdir(onnx_dir)print("build dir:", onnx_dir)

2. 测试数据

titles = ["Treehobby Metal 2PCS Front CVD Drive Shafts RC Cars Upgrade Parts for WLtoys 144001 1/14 RC Car Truck Buggy Replacement Accessories", 
"Solar System for Kids Space Toys, 8 Planets for Kids Solar System Model with Projector, Stem Educational Toys for 5 Year Old Boys Gift", 
"Bella Haus Design Peeing Gnome - 10.3 Tall Polyresin - Naughty Garden Gnome for Lawn Ornaments, Indoor or Outdoor Decorations - Red and Green Funny Flashing Gnomes", 
"FATExpress CMX500 CMX300 Parts Motorcycle CNC Front Fork Boot Shock Absorber Tube Slider Cover Gaiters for 2017 2018 2019 Rebel CMX 300 500 17-19 (Black)", 
"All Balls Racing 56-133-1 Fork and Dust Seal Kit", 
"Shaluoman Plating 5-Spoke Wheel Rims with Hard Plastic Tires for RC 1:10 Drift Car Color Black", 
"Betonex 5pcs PLASTIK MOLDS Casting Concrete Paving Garden Paths Pavement Stone Patio#S25", 
"OwnMy 5.2 Inch Rainbow Crystal Lotus Candle Tealight Holder Candlestick, Glass Votive Candle Lamps Holder Night Light Candlestick with Gift Box for Altar Windowsill Home Decor Christmas Wedding Party", 
"cnomg Pot Creative Plants DIY Container Pot Mini Fairy Garden Flower Plants and Sweet House for Decoration, Holiday Decoration, Indoor Decoration and Gift (Silver)", 
"DUSICHIN DUS-018 Foam Cannon Lance Pressure Washer Nozzle Tip Spray Gun 3000 PSI Jet Wash", 
"Haoohu Multicolored Bucket Hat for Women Men Girls Frog Fisherman Hat Beach Sun Hat for Outdoor Travel", 
"Renzline Pool CUE Glove Billiard Player - Green/Black - for Left Hand - One Size fits All",
"Hobbywing QUICRUN WP 1080 brushed (2-3S) Electronic Speed Controller Waterproof ESC With Program Box LED BEC XT60-Plug RC Car 1:10 30112750", 
"Mk Morse CSM868NTSC Metal Devil NXT Metal Cutting Circular Saw Blade, Thin Steel, 8-Inch Diameter, 68 TPI, 5/8-Inch Arbor, multi", 
"Barbie Fashionistas Doll 109", 
"KeShi Cordless Rotary Tool, Upgraded 3.7V Li-ion Rotary Accessory Kit with 42 Pieces Swap-able Heads, 3-Speed and USB Charging Multi-Purpose Power Tool for Delicate & Light DIY Small Projects", 
"White Knight 1707SBK-20AM Black Chrome M12x1.50 Bulge Acorn Lug Nut, 20 Pack", 
"Memory Foam Bath Mat Rug,16x24 Inches,Luxury Non Slip Washable Bath Rugs for Bathroom,Soft Absorbent Floor Mats of Green Leaves for Kitchen Bedroom Indoor", 
"DEWIN Airbrush Kit, Multi-purpose Airbrush Sets with Compressor -Dual Action 0.3mm 7CC Capacity Mini Air Compressor Spray Gun for Paint Makeup Tattoo Cake Decoration, Art Tattoo Nail Design", 
"Park Tool BBT-69.2 16-Notch Bottom Bracket Tool - Fits Shimano, SRAM, Chris King, Campagnolo, etc.", 
"ElaDeco 216 Ft Artificial Vines Garland Leaf Ribbon Greenery Foliage Rattan Greek Wild Jungle Decorative Accessory Wedding Party Garden Craft Wall Decoration"]

3. 准备工作

def load_all_model(path):#从modules.json读取模型路径modules_json_path = os.path.join(path, 'modules.json')with open(modules_json_path) as fIn:modules_config = json.load(fIn)from_backbone_path = os.path.join(path, modules_config[0].get('path'))from_pooling_path = os.path.join(path, modules_config[1].get('path'))from_Normalize_path = os.path.join(path, modules_config[2].get('path'))return from_backbone_path, from_pooling_path, from_Normalize_path
from_backbone_path, from_pooling_path, from_Normalize_path = load_all_model(raw_model_dir)
from transformers import AutoConfig, AutoModel, AutoTokenizer
model = AutoModel.from_pretrained(from_backbone_path)
tokenizer = AutoTokenizer.from_pretrained(from_backbone_path)
inputs = tokenizer(titles, padding=True, truncation=True, max_length=256, return_tensors="pt")
import torch
from sentence_transformers import modelspooling = models.Pooling.load(from_pooling_path)
normalize = models.Normalize.load(from_Normalize_path)

3.1迁移保存目标文件

import shutil
_dir, pooling_end_dir = os.path.split(from_pooling_path)
shutil.copytree(from_pooling_path, os.path.join(onnx_dir, pooling_end_dir))_dir, normalize_end_dir = os.path.split(from_Normalize_path)
shutil.copytree(from_Normalize_path, os.path.join(onnx_dir, normalize_end_dir))
'../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/2_Normalize'
def copy_tokenize_filename(filename):full_filename = os.path.join(from_backbone_path, filename)return shutil.copy(full_filename, os.path.join(onnx_dir, filename))print(copy_tokenize_filename("tokenizer.json"))
print(copy_tokenize_filename("tokenizer_config.json"))
print(copy_tokenize_filename("vocab.txt"))
../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/tokenizer.json
../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/tokenizer_config.json
../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/vocab.txt

4. model转onnx-gpu

device = torch.device("cuda:0")
model.eval()
model.to(device)
inputs = inputs.to(device)
export_model_path = os.path.join(onnx_dir, "model.onnx")with torch.no_grad():symbolic_names = {0: 'batch_size', 1: 'max_seq_len'}torch.onnx.export(model,  # model being runargs=tuple(inputs.values()),f=export_model_path,opset_version=12,  # 这个值传说12比11好,当然取决于onnx和onnxruntimedo_constant_folding=True, input_names=['input_ids',  'attention_mask','token_type_ids'],output_names=['start', 'end'], dynamic_axes={'input_ids': symbolic_names,  'attention_mask': symbolic_names,'token_type_ids': symbolic_names,'start': symbolic_names,'end': symbolic_names})print("Model exported at ", export_model_path)
Model exported at  ../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/model.onnx

5. 测试一下是否出错以及速度

5.1 测试速度是否OK

import onnxruntime
from torch import Tensor
export_model_path = os.path.join(onnx_dir, "model.onnx")
device = torch.device("cuda:0")
sess_options = onnxruntime.SessionOptions()
sess_options.optimized_model_filepath = export_model_path
session = onnxruntime.InferenceSession(export_model_path, sess_options, providers=['CUDAExecutionProvider']) # 你的是安装在cuda
2023-07-21 17:54:55.912264962 [W:onnxruntime:, session_state.cc:1136 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2023-07-21 17:54:55.912385419 [W:onnxruntime:, session_state.cc:1138 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
2023-07-21 17:54:56.222846005 [W:onnxruntime:, inference_session.cc:1491 Initialize] Serializing optimized model with Graph Optimization level greater than ORT_ENABLE_EXTENDED and the NchwcTransformer enabled. The generated model may contain hardware specific optimizations, and should only be used in the same environment the model was optimized in.
pooling_gpu = pooling.cuda()
normalize_gpu = normalize.cuda()
import time
begin = time.time()
for i in range(1000):inputs = tokenizer(titles, padding=True, truncation=True, max_length=256, return_tensors="pt")ort_inputs = {k: v.cpu().numpy() for k, v in inputs.items()}ort_outputs = session.run(None, ort_inputs)ort_outputs1 = pooling_gpu.forward(features={'token_embeddings': Tensor(ort_outputs[0]),'attention_mask': Tensor(ort_inputs.get('attention_mask'))})ort_outputs2 = normalize_gpu.forward(ort_outputs1)['sentence_embedding']
end = time.time()    
print("cost time:", end-begin)
cost time: 31.3445
begin = time.time()
for i in range(1000):inputs = tokenizer(titles, padding=True, truncation=True, max_length=256, return_tensors="np")ort_inputs = dict(inputs)ort_outputs = session.run(None, ort_inputs)ort_outputs1 = pooling_gpu.forward(features={'token_embeddings': Tensor(ort_outputs[0]).to(device),'attention_mask': Tensor(ort_inputs.get('attention_mask')).to(device)})ort_outputs2 = normalize_gpu.forward(ort_outputs1)['sentence_embedding']
end = time.time()    
print("cost time:", end-begin)
cost time: 19.234

5.2测试结果是否OK

from sentence_transformers import SentenceTransformerst_model = SentenceTransformer(raw_model_dir)
x = st_model.encode(titles)
import numpy as np
np.abs((x - ort_outputs2.cpu().numpy())).sum()
0.00010381325

误差数值很小,结果OK

6. tar 这些文件

abs_onnx_dir = os.path.abspath(onnx_dir)
# _dir, onnx_name = os.path.split(abs_onnx_dir)
os.system(f"tar -cf {abs_onnx_dir[:-1]}.tar {abs_onnx_dir}")
# f"tar -cf {abs_onnx_dir[:-1]}.tar {abs_onnx_dir}"
tar: Removing leading `/' from member names
0
http://www.yayakq.cn/news/698372/

相关文章:

  • 广西网站建设推广无忧网站建设价格
  • 企业做网页还是网站vlc WordPress
  • 学习网站建设的网站注册公司需要什么条件才能开
  • 查公司查企业用什么网站连城住房和城乡建设局门户网站
  • 学做网站论坛课程建站工具大全
  • 帮他人做视频网站违法吗最新网页游戏排行榜2021
  • 用asp.net做购物车网站网站设计建设趋势
  • 长沙做网站kaodezhuWordPress发文章同步
  • 广东省东莞市建设培训中心网站济南正规网站制作怎么选择
  • 有网站模板怎么建站网站架构功能模块及描述
  • 建设财经资讯网站的目的论坛建站
  • 平度网站建设HTML asp 网站
  • 物流网站建设 市场分析绿植租摆网站建设
  • 建设商业门户网站的重要网站脑图怎么做
  • 哈尔滨地铁爱建站seo排名快速
  • 保定设计网站建设桂林骏程网站建设
  • 北京专业网站维护公司鞍山网民
  • 免费做网站教程跨境网站有哪些
  • 怎样做网站跳转有专业做网站
  • 桂林网站开发m0773小型企业网站有哪些
  • 百度实时热点排行榜seo 优化公司
  • 静态网站源文件下载北京建设主管部门网站
  • 暴富建站 网址自媒体代运营怎么收费
  • 电影影视网站模板免费下载网站如何做301
  • 南京建设网站维护广州家居网站设计
  • 网站通栏怎么做种植园网站模板
  • 大学网页制作与网站建设电子商务网站建设问题
  • 快速优化网站建设wordpress二次元主体
  • 厦门网站建设人才wordpress access denied.
  • 哈尔滨网站设计公司网页设计专业培训班