当前位置: 首页 > news >正文

公司网站改版设计六安网站建设网络服务

公司网站改版设计,六安网站建设网络服务,福建泉州做淘宝的拿货什么网站,电商运营培训多少钱原谅把你带走的雨天 在渐渐模糊的窗前 每个人最后都要说再见 原谅被你带走的永远 微笑着容易过一天 也许是我已经 老了一点 那些日子你会不会舍不得 思念就像关不紧的门 空气里有幸福的灰尘 否则为何闭上眼睛的时候 又全都想起了 谁都别说 让我一个人躲一躲 你的承诺 我竟然没怀…

原谅把你带走的雨天
在渐渐模糊的窗前
每个人最后都要说再见
原谅被你带走的永远
微笑着容易过一天
也许是我已经 老了一点
那些日子你会不会舍不得
思念就像关不紧的门
空气里有幸福的灰尘
否则为何闭上眼睛的时候
又全都想起了
谁都别说
让我一个人躲一躲
你的承诺
我竟然没怀疑过
反反覆覆
要不是当初深深深爱过
我试着恨你
却想起你的笑容
                     🎵 陈楚生/单依纯《原谅》


在机器学习和数据科学领域,不平衡数据集是一个常见的问题。数据不平衡会导致模型偏向于预测多数类,从而影响分类器的性能。为了应对这一挑战,研究人员提出了许多方法,其中SMOTE(Synthetic Minority Over-sampling Technique)是最常用的方法之一。本文将介绍如何使用imblearn库中的SMOTE来处理不平衡数据集。

什么是SMOTE?

SMOTE是一种过采样技术,通过生成合成的少数类样本来平衡数据集。其基本思想是基于少数类样本的特征向量,在其特征空间中进行插值,生成新的合成样本。SMOTE可以有效地减少因数据不平衡导致的模型偏差,提高分类器的性能。

安装Imbalanced-learn库

在使用SMOTE之前,我们需要安装imbalanced-learn库,这是一个专门用于处理不平衡数据集的Python库。可以使用以下命令进行安装:

pip install imbalanced-learn

基本用法

假设我们有一个不平衡的数据集,其中少数类样本较少。我们将使用SMOTE对其进行处理。以下是一个简单的示例:

import pandas as pd
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import SMOTE
from collections import Counter# 生成一个不平衡的数据集
X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, n_clusters_per_class=1, weights=[0.9, 0.1], flip_y=0, random_state=42)# 查看数据分布
print(f"原始数据集类别分布: {Counter(y)}")# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)# 使用SMOTE进行过采样
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)# 查看过采样后的数据分布
print(f"过采样后数据集类别分布: {Counter(y_resampled)}")

代码详解

数据生成

我们使用make_classification函数生成一个不平衡的数据集。该数据集有1000个样本,20个特征,其中90%的样本属于多数类(类0),10%的样本属于少数类(类1)。

X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, n_clusters_per_class=1, weights=[0.9, 0.1], flip_y=0, random_state=42)

数据分布

使用Counter查看原始数据集的类别分布,确认数据集不平衡。

print(f"原始数据集类别分布: {Counter(y)}")

数据集划分

将数据集划分为训练集和测试集,并保持数据分布的一致性。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

SMOTE过采样

使用SMOTE对训练集进行过采样,以平衡少数类和多数类样本的数量。

smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

查看过采样后的数据分布

再次使用Counter查看过采样后的数据分布,确认数据集已经平衡。

print(f"过采样后数据集类别分布: {Counter(y_resampled)}")

SMOTE的优点和局限性

优点

  • 提高模型性能:通过平衡数据集,SMOTE可以显著提高分类器的性能,特别是在处理不平衡数据时。
  • 易于实现:使用imbalanced-learn库中的SMOTE非常简单,只需几行代码即可完成过采样。
  • 灵活性:SMOTE可以与其他预处理方法和机器学习算法结合使用,具有很高的灵活性。
    局限性:
  • 可能引入噪声:由于SMOTE是基于插值的方法生成合成样本,可能会引入一些噪声数据,影响模型的性能。
  • 不适用于高维数据:在高维数据中,生成合成样本的插值过程可能会变得不稳定,影响过采样效果。
  • 无法处理极端不平衡:对于极端不平衡的数据集,SMOTE的效果可能不如其他高级方法(如ADASYN、Borderline-SMOTE等)。

总结

SMOTE是一种强大的过采样技术,可以有效地处理不平衡数据集,提升分类器的性能。通过imbalanced-learn库中的SMOTE实现,我们可以轻松地对少数类样本进行过采样,平衡数据集。在实际应用中,我们可以根据具体数据集的特点和需求,选择合适的过采样方法。

http://www.yayakq.cn/news/749449/

相关文章:

  • 极简资讯网站开发阜阳网站建设推广
  • 中小企业建设网站应注意怎么做刷qq业务网站
  • 我有一个网站怎么做外贸长沙百度seo
  • 网站运营教程企业管理系统官网
  • 网站定制 天津小说网站排名
  • 网站网上预定功能怎么做深圳网站建设定制开发 超凡科技
  • 政务网站建设存在问题佛山网站建设 天博
  • 礼物网站模板江苏省建设工人考勤网站
  • wordpress 插件阅读哈尔滨推广优化公司
  • 创意设计师个人网站网站建设安全规范
  • 微信小程序怎么做购物网站西宁市建设网站多少钱
  • 福田企业网站优化哪个好设计说明怎么写
  • 机关门户网站建设管理情况aws wordpress ssl
  • 网站建设服务范围潜江招聘网
  • 河北网站优化google在线网页代理
  • 培训网站建设公司wordpress 链接数据库
  • 网站推广的短视频推广做网站专用素材
  • 彩票网站制作开发中国建筑网官网是哪个
  • 电子政务网站建设总结版面设计图大全
  • 网站建设方案范文2000字广州网站建设推广专家
  • 建个视频网站多少钱全球咨询公司最新排名
  • 程序员建网站比wordpress更好的网站程序
  • 企业网站建设 cms网站广告推广怎么做的
  • 十大ppt模板免费下载网站小程序如何搭建
  • 全国十大婚恋网站排名镇江网站建设 找思创
  • 旅游网站设计模板站长工具综合权重查询
  • 做缓网站wps的ppt做网站超链接
  • 深圳网站营销推广公司倡萌wordpress
  • 柳城企业网站制作哪家好广东工程建设监理有限公司网站
  • vue.js 做网站如何做擦边球网站