当前位置: 首页 > news >正文

寒亭网站建设vs怎么做网站

寒亭网站建设,vs怎么做网站,asp网站 访问 变慢 监测,易搭应用快速开发平台一、提出背景 当前一阶的物体检测算法,如SSD和YOLO等虽然实现了实时的速度,但精度始终无法与两阶的Faster RCNN相比。是什么阻碍了一阶算法的高精度呢?何凯明等人将其归咎于正、负样本的不平衡,并基于此提出了新的损失函数Focal L…

一、提出背景

  当前一阶的物体检测算法,如SSD和YOLO等虽然实现了实时的速度,但精度始终无法与两阶的Faster RCNN相比。是什么阻碍了一阶算法的高精度呢?何凯明等人将其归咎于正、负样本的不平衡,并基于此提出了新的损失函数Focal Loss及网络结构RetinaNet,在与同期一阶网络速度相同的前提下,其检测精度比同期最优的二阶网络还要高。
  为了解决一阶网络中样本的不均衡问题,何凯明等人首先改善了分类过程中的交叉熵函数,提出了可以动态调整权重的Focal Loss。

二、交叉熵损失

1. 标准交叉熵损失

  标准的交叉熵函数,其形式如式(2-1)所示:
CE(p,y)={−log(p)if(y=1)−log(1−p)otherwise(2-1)CE(p,y)=\left\{\begin{matrix} -log(p) & if(y=1) & \\ -log(1-p) & otherwise & \end{matrix}\right.\tag{2-1}CE(p,y)={log(p)log(1p)if(y=1)otherwise(2-1)

  公式中,ppp代表样本在该类别的预测概率,yyy代表样本标签。可以看出,当标签为1时,ppp越接近1,则损失越小;标签为0时,ppp越接近0,则损失越小,符合优化的方向。
  为了方便表示,按照式(2-2)将ppp标记为ptp_{t}pt
pt={pif(y=1)1−potherwise(2-2)p_{t}=\left\{\begin{matrix} p & if(y=1) & \\ 1-p & otherwise & \end{matrix}\right.\tag{2-2}pt={p1pif(y=1)otherwise(2-2)
  则交叉熵可以表示为式(2-3)的形式:
CE(p,y)=CE(pi)=−log(pi)(2-3)CE(p,y)=CE(p_{i})=-log(p_{i})\tag{2-3}CE(p,y)=CE(pi)=log(pi)(2-3)

  标准的交叉熵中所有样本的权重都是相同的,因此如果正、负样本不均衡,大量简单的负样本会占据主导地位,少量的难样本与正样本会起不到作用,导致精度变差。

2. 平衡交叉熵损失

  为了改善样本的不平衡问题,平衡交叉熵在标准的基础上增加了一个系数αt\alpha _{t}αt来平衡正、负样本的权重,αt\alpha _{t}αt由超参数α\alphaα按照式(2-4)计算得来,α\alphaα取值在[0,1]区间内。

αt={αif(y=1)1−αotherwise(2-4)\alpha _{t}=\left\{\begin{matrix} \alpha & if(y=1) & \\ 1-\alpha & otherwise & \end{matrix}\right.\tag{2-4}αt={α1αif(y=1)otherwise(2-4)

  有了αt\alpha _{t}αt,平衡交叉熵损失公式如式(2-5)所示:

CE(pt)=−αtlog(pt)(2-5)CE(p_{t})=-\alpha _{t}log(p_{t})\tag{2-5}CE(pt)=αtlog(pt)(2-5)

  尽管平衡交叉熵损失改善了正、负样本间的不平衡,但由于其缺乏对难易样本的区分,因此没有办法控制难易样本之间的不均衡。

三、Focal Loss

  Focal Loss为了同时调节正、负样本与难易样本,提出了如式(3-1)所示的损失函数:

FL(pt)=−αt(1−pt)γlog(pt)(3-1)FL(p_{t})=-\alpha_{t}(1-p_{t})^{\gamma}log(p_{t})\tag{3-1}FL(pt)=αt(1pt)γlog(pt)(3-1)

  对于该损失函数,又如下3个属性:

  • 与平衡交叉熵类似,引入了αt\alpha_{t}αt权重,为了改善正负样本的不均衡,可以提升一些精度。
  • (1−pt)γ(1-p_{t})^{\gamma}(1pt)γ是为了调节难易样本的权重。当一个边框被误分类时,ptp_{t}pt较小,则(1−pt)γ(1-p_{t})^{\gamma}(1pt)γ接近于1,其损失几乎不受影响;当ptp_{t}pt接近于1时,表明其分类预测较好,是简单样本,(1−pt)γ(1-p_{t})^{\gamma}(1pt)γ接近于0,因此其损失被调低了。
  • γ\gammaγ是一个调制因子,γ\gammaγ越大,简单样本损失的贡献度会越低,

四、RetinaNet

  为了验证Focal Loss的效果,何凯明等人还提出了一个一阶物体检测结构RetinaNet,其结构如图4-1所示:

在这里插入图片描述

图4-1 RetinaNet网络结构图
  • 在Backbone部分,RetinaNet利用ResNet与FPN构建了一个多尺度特征的特征金字塔。
  • RetinaNet使用了类似于Anchor的预选框,在每一个金字塔层,使用了9个大小不同的预选框。
  • 分类子网络:分类子网络为每一个预选框预测其类别,因此其输出特征大小为KA×W×H,A默认为9,K代表类别数。中间使用全卷积网络与ReLU激活函数,最后利用Sigmoid函数输出预测值。
  • 回归子网络:回归子网络与分类子网络平行,预测每一个预测框的偏移量,最终输出特征的大小为4A×W×W。与当前主流工作不同的是,两个子网络没有权重的共享。
http://www.yayakq.cn/news/446087/

相关文章:

  • 温州建设集团官方网站免费建立个人网站申请
  • 佛山市公司网站建设哪家好做外贸有哪些平台
  • 设计的有趣的网站门户网站推广
  • 蚌埠做网站哪家好天津市建设与管理局网站
  • 移动网站开发服务器聊城大型门户网站建设
  • 北京市专业网站建设网站怎么提高百度权重
  • php+mysql 2012也买酒商城网站源码seo服务外包报价
  • 厚街建设网站网络推广软件平台
  • 网站策划书如何做如何做psd的模板下载网站
  • 公司网站后台维护怎么做建设网站类型
  • 济南网站建设招标广州越秀区风险等级
  • 企业网站建设方案价位图书馆网页设计素材
  • 金汇网站建设外贸选品网站
  • 直播课网站怎样做的wordpress 文件下载功能
  • 茂名网站制作推广成都网站快照优化公司
  • wordpress 增加站长统计秦皇岛城市建设网
  • 百度网站解封公司简介模板免费doc
  • 建一个分类信息网站百度关键词seo年度费用
  • 做网站公司叫什么如何查询一个网站的注册信息
  • 友情链接添加在网站中有什么用广州做网站比较好的公司
  • 长春一般做一个网站需要多少钱cn网站怎么做
  • 购物类网站模板设计工作室网站源码
  • 重庆企业网站推广价格网站建设需要了解哪些信息
  • 分类网站 制作网站板块怎么做
  • 西安制作网站的电话北京假山设计制作
  • 做职业资格考试的网站有哪些天元建设集团有限公司商业承兑汇票信誉怎么样
  • 宣城网站制作网店如何推广自己的产品
  • 网站跳转站代码在线制作印章生成器
  • 12306的网站建设网页版微信登录入口手机
  • 什么企业时候做网站wordpress文章写html代码