当前位置: 首页 > news >正文

大学生做简历的网站平台网站建设源码

大学生做简历的网站,平台网站建设源码,广州建盏工程设计有限公司,有什么平台可以推广信息论文地址:https://arxiv.org/pdf/2002.05709.pdf 目前流行的无监督学范式。通过训练,使模型拥有比较的能力。即,模型能够区别两个数据(instance)是否是相同的。这在 深度聚类 领域受到广泛的关注。(在有监…

在这里插入图片描述
论文地址:https://arxiv.org/pdf/2002.05709.pdf

目前流行的无监督学范式。通过训练,使模型拥有比较的能力。即,模型能够区别两个数据(instance)是否是相同的。这在 深度聚类 领域受到广泛的关注。(在有监督中的 few-shot, 使用一些类让模型学会比较,再用一些新类去测试模型的比较能力)

我们分几个模块了解对比学习。

数据增强

对比学习主要是通过拉进 正例对 之间特征表示的相似度;以及拉远 负例对 之间特征表示的相似度。
从而使模型具有 对比的能力。因为是无监督学习,我们的数据没有标签。我们构建正例对的方法就是通过数据增强(基本不改变数据的语义信息)。
数据增强的方法有很多种:
图片数据增强
文本数据增强
语音数据增强
图数据增强

正负例对的构建

原数据:(x1,x2,x3)(x_1, x_2, x_3)(x1,x2,x3);
增强数据a:(x1a,x2a,x3a)(x_1^a, x_2^a, x_3^a)(x1a,x2a,x3a);
增强数据b:(x1b,x2b,x3b)(x_1^b, x_2^b, x_3^b)(x1b,x2b,x3b);

Aug_data{a & b}x1bx_1^bx1bx2bx_2^bx2bx3bx_3^bx3b
x1ax_1^ax1a(x1a,x1b)\color{red}(x_1^a, x_1^b)(x1a,x1b)(x1a,x2b)(x_1^a, x_2^b)(x1a,x2b)(x1a,x3b)(x_1^a, x_3^b)(x1a,x3b)
x2ax_2^ax2a(x2a,x1b)(x_2^a, x_1^b)(x2a,x1b)(x2a,x2b)\color{red}(x_2^a, x_2^b)(x2a,x2b)(x2a,x3b)(x_2^a, x_3^b)(x2a,x3b)
x3ax_3^ax3a(x3a,x1b)(x_3^a, x_1^b)(x3a,x1b)(x3a,x2b)(x_3^a, x_2^b)(x3a,x2b)(x3a,x3b)\color{red}(x_3^a, x_3^b)(x3a,x3b)

构成的正例对:红色;
构成的负例对:黑色。

上面说的只是原始的 对比对的构造方式。 现在还有根据 语义信息 进行去除假负例对。
假负例对: x1,x2x_1, x_2x1,x2 属于一个 簇类,(x1a,x2b)(x_1^a, x_2^b)(x1a,x2b) 却属于负例对,实际上应该属于正例对,且他们的特征表示的相似度应该很大。

编码器 Φ(⋅)\Phi(\cdot)Φ()

将图片,文本,语音,图等进行编码。得到特征矩阵 HHH
对于一个原数据: X={xi}i=0MX = \{ x_i \}_{i=0}^MX={xi}i=0M, 我们得到其相应的增数据:Xa={xia}i=0MX^a = \{ x_i^a \}_{i=0}^MXa={xia}i=0M, Xb={xib}i=0MX^b = \{ x_i^b \}_{i=0}^MXb={xib}i=0MMMM是batch size的大小。
然后经过编码得到特征矩阵:Ha=Φ(Xa),Hb=Φ(Xb)H^a = \Phi(X^a), H^b = \Phi(X^b)Ha=Φ(Xa),Hb=Φ(Xb),其中,Ha,Hb∈RM×hidden_sizeH^a, H^b \in \mathbb{R}^{M \times hidden\_size}Ha,HbRM×hidden_size

Project head f(⋅)f(\cdot)f()

一般使用一个两层的线性MLP或者三层的非线性MLP。将得到的Feature Matrix映射到一个字空间(subspace)。一般都是将其映射为128维。
对于得到的特征矩阵:Ha,HbH^a, H^bHa,Hb。我们经过 f(⋅)f(\cdot)f() 得到映射的子空间: Za=f(Ha),Zb=f(Hb)Z^a = f(H^a), Z^b = f(H^b)Za=f(Ha),Zb=f(Hb), 其中,Za,Zb∈RM×128Z^a, Z^b \in \mathbb{R}^{M \times 128}Za,ZbRM×128

最小化对比损失

得到子空间表示后,在使用对比损失函数,最小化损失函数。

lia=−log⁡exp⁡(s(zia,zib)/τ)∑j=1M[exp⁡(s(zia,zja)/τ)+exp⁡(s(zia,zjb)/τ)]lib=−log⁡exp⁡(s(zib,zia)/τ)∑j=1M[exp⁡(s(zib,zja)/τ)+exp⁡(s(zib,zjb)/τ)]L=12M∑i=1M(lia+lib)\mathcal{l}^a_i = -\log \frac{\exp(s(z_i^a, z_i^b)/\tau)}{\sum_{j=1}^{M} [\exp(s(z_i^a, z_j^a)/\tau) + \exp(s(z_i^a, z_j^b)/\tau) ]} \\ \mathcal{l}^b_i = -\log \frac{\exp(s(z_i^b, z_i^a)/\tau)}{\sum_{j=1}^{M} [\exp(s(z_i^b, z_j^a)/\tau) + \exp(s(z_i^b, z_j^b)/\tau) ]} \\ \mathcal{L} = \frac{1}{2M} \sum_{i=1}^{M} (\mathcal{l}^a_i + \mathcal{l}^b_i) lia=logj=1M[exp(s(zia,zja)/τ)+exp(s(zia,zjb)/τ)]exp(s(zia,zib)/τ)lib=logj=1M[exp(s(zib,zja)/τ)+exp(s(zib,zjb)/τ)]exp(s(zib,zia)/τ)L=2M1i=1M(lia+lib)
其中,τ\tauτ 是温度参数,MMM 是batch size的大小,s(⋅)s(\cdot)s() 是相似性度量,具体表达为:s(zi,zj)=ziTzj/∣∣zi∣∣2⋅∣∣zj∣∣2s(z_i, z_j) = z_i^Tz_j / ||z_i||_2 \cdot ||z_j||_2s(zi,zj)=ziTzj/∣∣zi2∣∣zj2

实验的超参数和一些细节

http://www.yayakq.cn/news/333804/

相关文章:

  • 宁乡网站建设宁波论坛网
  • 免费的建站软件推荐下载网站页面怎么做地图
  • 免费手机网站建站平台wordpress 获取插件数据库
  • 公司制作网站费用网站建设的素材
  • 中山网站快照优化公司国际站关键词推广
  • 网站免费建站k服装定制前景
  • 梧州网站优化公司个人主体可以做网站吗
  • 北京西站附近的景点有哪些网页设计的图片怎么设置
  • 网站开发进度表建设部网站技术负责人业绩表
  • 手机版网站版面设计怎么做乔拓云智能建站系统官网
  • 网站空间商推荐网站美工建设软件下载
  • 国内wordpress著名站怎么在百度上发布帖子
  • 公司网站链接杭州网站制作蒙特
  • 北京建设部网站职称微信运营者和管理员的区别
  • 营销管理网站制作湖北网
  • 推广平台网站有哪些齐齐哈尔铁峰建设局网站
  • 如何在网站做投票wordpress采集公众号图片
  • 展示型网站可以优化吗价格网怎么打不开了
  • 公路水运建设质量与安全监督系统网站分销渠道的三种模式
  • wordpress网站阿里云备案号微信怎样开公众号
  • 网站不接入备案济南做设计公司网站
  • 做cpa的网站源码如何提交网站连接到百度
  • 淘宝客网站可以做分销吗微信app下载安装官方版2019
  • 高端的网站开发万网怎么建设网站
  • 广州网站建设360元制作视频软件
  • 潍坊专业网站建设企业网站托管方案内容具体有哪些
  • 网站交易网腾讯网静态网站建设
  • wordpress怎么找到分类目录如何做公司网站优化
  • 计算机编程网课淄博seo推广
  • 河南的网站建设公司wordpress可视化编辑器