当前位置: 首页 > news >正文

小榄做网站企业做简历的网站都有哪些

小榄做网站企业,做简历的网站都有哪些,高佣联盟做成网站怎么做,电子商务网站设计总结1. 引言 在计算机视觉任务中,特征匹配是目标识别、图像配准和物体跟踪的重要组成部分。本文介绍如何使用 HOG(Histogram of Oriented Gradients,方向梯度直方图) 和 角点检测(Corner Detection) 进行特征匹…

1. 引言

在计算机视觉任务中,特征匹配是目标识别、图像配准和物体跟踪的重要组成部分。本文介绍如何使用 HOG(Histogram of Oriented Gradients,方向梯度直方图)角点检测(Corner Detection) 进行特征匹配。

1.1 为什么选择HOG和角点?

  • HOG特征 适用于物体检测,能够提取局部梯度信息,具有旋转和光照不变性。
  • 角点检测 例如Harris角点、Shi-Tomasi等方法,能够找到图像中结构突变的关键点,提高匹配精度。
  • 结合HOG与角点检测,可以同时利用纹理信息和几何信息,提高匹配的鲁棒性。

2. HOG特征提取

2.1 HOG的基本原理

HOG的基本思想是计算局部区域内像素梯度的方向分布,并构建特征向量。

HOG计算步骤:

  1. 计算梯度:使用Sobel算子计算水平梯度 ( G_x ) 和垂直梯度 ( G_y )。
  2. 计算梯度幅值和方向
    [ M = \sqrt{G_x^2 + G_y^2} ]
    [ \theta = \tan^{-1}(G_y / G_x) ]
  3. 划分细胞(Cells):将图像划分为小的单元格(例如 8×8)。
  4. 计算直方图:在每个Cell中统计不同方向的梯度强度。
  5. 块归一化(Block Normalization):对多个Cells组成的Block进行归一化,以增强光照变化的鲁棒性。
  6. 特征向量拼接:将所有Block的特征向量拼接成最终的HOG描述子。

2.2 代码示例

使用OpenCV和hog库提取HOG特征。

import cv2
import numpy as np
from skimage.feature import hogdef compute_hog(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)features, hog_image = hog(gray, orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualize=True, feature_vector=True)return features, hog_imageimage = cv2.imread('image.jpg')
hog_features, hog_vis = compute_hog(image)
cv2.imshow('HOG Features', hog_vis)
cv2.waitKey(0)
cv2.destroyAllWindows()

3. 角点检测

3.1 角点检测原理

角点是图像中具有显著变化的点,在特征匹配中至关重要。常用角点检测方法:

  • Harris角点检测:基于自相关矩阵,计算图像窗口内的梯度变化。
  • Shi-Tomasi角点检测:改进Harris方法,选择响应更强的角点。
  • FAST角点检测:基于快速关键点检测,适用于实时应用。

3.2 代码示例

使用OpenCV实现Harris角点检测。

import cv2
import numpy as npdef detect_corners(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = np.float32(gray)corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)image[corners > 0.01 * corners.max()] = [0, 0, 255]  # 标记角点return imageimage = cv2.imread('image.jpg')
detected_image = detect_corners(image)
cv2.imshow('Corners', detected_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

4. HOG+角点匹配

4.1 结合HOG和角点检测

HOG提取局部特征,而角点提供关键匹配点,可以使用 最近邻搜索(Nearest Neighbor Search, NNS)FLANN(Fast Library for Approximate Nearest Neighbors) 进行匹配。

4.2 代码示例

import cv2
import numpy as np
from skimage.feature import hog
from scipy.spatial import distancedef extract_hog_at_corners(image, corners):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)features = []for corner in np.argwhere(corners > 0.01 * corners.max()):x, y = corner[1], corner[0]patch = gray[max(y-8, 0):min(y+8, gray.shape[0]), max(x-8, 0):min(x+8, gray.shape[1])]if patch.shape[0] == 16 and patch.shape[1] == 16:hog_feature = hog(patch, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), feature_vector=True)features.append((x, y, hog_feature))return featuresdef match_features(features1, features2):matches = []for (x1, y1, f1) in features1:best_match = min(features2, key=lambda f2: distance.euclidean(f1, f2[2]))x2, y2, _ = best_matchmatches.append(((x1, y1), (x2, y2)))return matches# 读取两张待匹配图像
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')# 角点检测
corners1 = cv2.cornerHarris(cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY).astype(np.float32), 2, 3, 0.04)
corners2 = cv2.cornerHarris(cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY).astype(np.float32), 2, 3, 0.04)# 提取HOG特征
features1 = extract_hog_at_corners(image1, corners1)
features2 = extract_hog_at_corners(image2, corners2)# 进行匹配
matches = match_features(features1, features2)# 可视化匹配结果
for (pt1, pt2) in matches:cv2.line(image1, pt1, pt2, (0, 255, 0), 1)cv2.imshow('Matched Features', image1)
cv2.waitKey(0)
cv2.destroyAllWindows()

5. 优化策略

  • 使用FLANN加速匹配
  • 结合RANSAC剔除错误匹配
  • 多尺度金字塔提高匹配稳定性

6. 结论

HOG结合角点检测能够在图像匹配任务中提供高鲁棒性的特征描述。适用于目标识别、拼接和物体跟踪等应用。


参考资料

  • Dalal & Triggs, “Histograms of Oriented Gradients for Human Detection”, CVPR 2005.
  • OpenCV 官方文档 https://docs.opencv.org
http://www.yayakq.cn/news/634141/

相关文章:

  • 沈阳响应式网站建设全国网站开发
  • 网站建设论坛fantodowordpress说说伪静态
  • 足球网站模板下载网络域名侵权十大案例
  • wordpress主题上传怎么用网站seo模块
  • wordpress搬站换空间细谈电商网站外链建设的策略
  • 做得不好的知名企业网站郑州市住房和城乡建设厅官网
  • 福州优化网站建设网站规划内容包括
  • 站长之家网站查询咸阳学校网站建设哪家好
  • 新手搭建网站南阳做网站公司
  • 合作公司做网站乌市正规网站建设
  • 网站分析怎么做网站域名自动跳转
  • 国内主流网站开发技术网站建设高级教程
  • 关于做公司网站南京网站制作公司
  • 苏州网站开发网站建立费用营销型网站建站要素
  • 天津专业的做网站与运营的公司微信小程序怎么上架商品
  • 网站编程优秀室内设计作品
  • 怎么让别人访问自己做的网站郑州网站建设 服务创业
  • 适合高中生做网站的主题怎么到国外网站去接模具订单做
  • 鄂尔多斯网站制作 建设网站建设谈判技巧
  • 搜索引擎是什么意思啊搜索自定义关键词优化
  • 做网站开发多少钱安全协议书 网站开发公司
  • 凤冈建设局网站微信小程序购物商城
  • 山东卓创网络网站建设yusi wordpress
  • 360网站收录提交入口wordpress许愿插件
  • 网站后台编辑教程游戏推荐网站怎么做
  • 班级网站制作教程莱芜金点子信息港招聘信息
  • 如何做医美机构网站观察分析qq群网站推广
  • 泉州高端模板建站怎样用织梦做网站
  • 自己的网站怎么优化杭州精高端网站建设
  • 自己做的网站用在博客上软件公司有哪些部门