当前位置: 首页 > news >正文

微信小店可以做分类网站wordpress网站如何添加栏目

微信小店可以做分类网站,wordpress网站如何添加栏目,上海app网络推广公司电话,微信公众平台登录入口官网使用Python进行城市市场潜能分析 简介 本教程将指导您如何使用Python和Pandas库来处理城市数据,包括GDP、面积和城市间距离。我们将计算每个城市的市场潜能,这有助于了解各城市的经济影响力。 步骤 1: 准备环境 确保您的环境中安装了Python和以下库&…

使用Python进行城市市场潜能分析

简介

本教程将指导您如何使用Python和Pandas库来处理城市数据,包括GDP、面积和城市间距离。我们将计算每个城市的市场潜能,这有助于了解各城市的经济影响力。

步骤 1: 准备环境

确保您的环境中安装了Python和以下库:

  • pandas
  • numpy
  • matplotlib

可以通过以下命令安装缺失的库:

pip install pandas numpy matplotlib openpyxl

步骤 2: 读取数据

使用Pandas读取包含城市名称、年份、GDP、面积和城市ID的Excel文件。

import pandas as pd# 读取数据
data_df = pd.read_excel('283地级市数据.xlsx', sheet_name='Sheet1', header=0)

步骤 3: 数据预处理

确保数据框的索引和列名正确设置,以便进行后续计算。

# 设置城市ID为索引
data_df.set_index('id', inplace=True)

步骤 4: 读取距离数据

读取城市间距离数据,确保第一行和第一列包含城市ID。

distance_df = pd.read_excel('规整化的283地级市的欧氏距离(带标题).xlsx', index_col=0, header=0)

步骤 5: 计算市场潜能

计算每个城市的市场潜能,考虑其GDP和与其他城市的距离。

import numpy as np# 计算di值
dii_values = (2/3) * (data_df['area'] / np.pi)**0.5# 初始化市场潜能DataFrame
market_potential_df = pd.DataFrame(index=data_df.index, columns=data_df['year'].unique())# 计算市场潜能
for year in market_potential_df.columns:for city_id in market_potential_df.index:Y_i = data_df.loc[city_id, 'gdp']dii = dii_values.loc[city_id]MP_i = Y_i / dii if not np.isnan(Y_i) else 0for other_city_id in distance_df.index:if city_id != other_city_id:Y_j = data_df.loc[other_city_id, 'gdp']d_ij = distance_df.loc[city_id, other_city_id]MP_i += Y_j / d_ij if not np.isnan(Y_j) else 0market_potential_df.loc[city_id, year] = MP_i

步骤 6: 输出结果

将计算结果输出到新的Excel文件。

output_file_path = '市场潜能结果.xlsx'
market_potential_df.to_excel(output_file_path)
print(f"市场潜能数据已成功输出到 {output_file_path}")

步骤 7: 可视化分析

使用matplotlib绘制特定城市的市场潜能变化。

import matplotlib.pyplot as plt# 绘制石家庄2003-2015年的市场潜能散点图
shijiazhuang_id = 3  # 石家庄市的城市ID
shijiazhuang_potential = market_potential_df.loc[shijiazhuang_id, (market_potential_df.columns >= 2003) & (market_potential_df.columns <= 2015)]
plt.figure(figsize=(10, 6))
plt.scatter(shijiazhuang_potential.index, shijiazhuang_potential.values, color='blue')
plt.title('石家庄2003-2015年市场潜能散点图')
plt.xlabel('年份')
plt.ylabel('市场潜能')
plt.grid(True)
plt.show()

结论

本教程提供了一个完整的流程,从读取城市数据到计算市场潜能,最后将结果可视化。这有助于理解各城市的经济影响力和相互关系。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import osplt.rcParams['font.sans-serif'] = ['SimHei']  # 黑体
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['axes.unicode_minus'] = False  # 正确显示负号# 读取GDP和面积数据,假设第一列为城市名称,第二列为年份,第三列为GDP,第四列为面积,第五列为城市ID
data_df = pd.read_excel('283地级市数据.xlsx', sheet_name='Sheet1', header=0)# 读取距离数据,第一行为城市ID,第一列为城市ID
distance_df = pd.read_excel('规整化的283地级市的欧氏距离(带标题).xlsx', index_col=0, header=0)# 计算di值
dii_values = (2/3) * (data_df['area'] / np.pi)**0.5# 初始化市场潜能DataFrame,使用城市ID作为索引
market_potential_df = pd.DataFrame(index=data_df['id'].unique(), columns=data_df['year'].unique())# 计算市场潜能
for year in market_potential_df.columns:for city_id in market_potential_df.index:# 找到当前城市和年份对应的GDPcity_data = data_df[(data_df['id'] == city_id) & (data_df['year'] == year)]if city_data.empty:continue  # 如果没有找到数据,跳过这个城市和年份Y_i = city_data['gdp'].values[0]dii = dii_values[city_id]MP_i = Y_i / dii if not np.isnan(Y_i) else 0for other_city_id in distance_df.index:if city_id != other_city_id:# 找到其他城市和年份对应的GDPother_city_data = data_df[(data_df['id'] == other_city_id) & (data_df['year'] == year)]if other_city_data.empty:continue  # 如果没有找到数据,跳过这个城市Y_j = other_city_data['gdp'].values[0]d_ij = distance_df.loc[city_id, other_city_id]MP_i += Y_j / d_ij if not np.isnan(Y_j) else 0market_potential_df.loc[city_id, year] = MP_i# 读取Excel文件到DataFrame
market_potential_df = pd.read_excel('市场潜能结果.xlsx')# 确保ID列是DataFrame的索引
market_potential_df.set_index('id', inplace=True)# 筛选石家庄市的数据,城市ID为3
shijiazhuang_id = 3  # 石家庄市的城市ID
shijiazhuang_potential = market_potential_df.loc[shijiazhuang_id, (market_potential_df.columns >= 2003) & (market_potential_df.columns <= 2015)]# 确保年份是数值类型
shijiazhuang_potential.index = pd.to_numeric(shijiazhuang_potential.index, errors='coerce')# 绘制散点图
plt.figure(figsize=(10, 6))
plt.scatter(shijiazhuang_potential.index, shijiazhuang_potential.values, color='blue')
plt.title('石家庄2003-2015年城市潜力散点图')
plt.xlabel('年份')
plt.ylabel('城市潜力')
plt.grid(True)
plt.show()

在这里插入图片描述

​​​​​​在这里插入图片描述

http://www.yayakq.cn/news/300919/

相关文章:

  • 网站登录后台地址如何做外贸营销型网站
  • 吉林网站建设代理渠道外贸网站建设专业
  • 重庆锅炉网站建设公司自己的网站怎么推广
  • 网站设计理念怎么写绿色为主色的网站
  • 网站建设与运营预算打开网站总显示建设中
  • 绵阳网站建设制作湛江企业自助建站系统
  • 超大免费网站空间龙岗网站建设方案
  • 农安建设局网站深圳小程序app定制开发
  • 酷站网站重庆网站建设川娃子
  • 沈阳建设工程质量检测中心网站网站除了做流量还需要什么软件
  • 做剧情游戏的网站做网站设计需要学什么
  • 福田网站建设价格网站首页该怎么做
  • 为什么很多中国人去菲律宾做网站深圳福永
  • 网站建设基本标准汕头资讯网
  • 网页制作与设计站点应该怎么建网站服务器租用资质
  • 班级建设网站首页网页界面设计课程
  • 企业公司做网站揭东建设局网站
  • 永兴县网站建设公司成立做网站的公司
  • 申请域名流程后怎样做网站晋中市建设局网站
  • 用vps建网站备案做网站一个月20g流量够吗
  • 网站推广页建设招标网官方网站
  • eclipse网站开发流程图胶州专业网站建设公司
  • 网站名称设置国内精自品线一区91制片
  • 郑州网站建设信息做网站 怎么推广
  • 深圳网站建设公司服务苏州建网站的公司外包服务
  • 以前自己做的网站怎么样删除网站开发公司小程序开发
  • 潮州市工程建设网站温州设计网站建设
  • 长沙网站设计多少钱一个月seo网络优化平台
  • 怎么做弹幕网站营销型网站有意义吗
  • 商城网站的建设定位昆明最新消息今天