当前位置: 首页 > news >正文

如何用虚拟主机做网站网站建设平台协议书

如何用虚拟主机做网站,网站建设平台协议书,做网站要的带宽是什么,虚拟主机和服务器简介 langchain中有个比较有意思的prompt template叫做FewShotPromptTemplate。 他是这句话的简写:“Prompt template that contains few shot examples.” 什么意思呢?就是说在Prompt template带了几个比较简单的例子。然后把这些例子发送给LLM&…

简介

langchain中有个比较有意思的prompt template叫做FewShotPromptTemplate。

他是这句话的简写:“Prompt template that contains few shot examples.”

什么意思呢?就是说在Prompt template带了几个比较简单的例子。然后把这些例子发送给LLM,作为简单的上下文环境,从而为LLM提供额外的一些关键信息。

这种few shot examples非常有用,如果你希望LLM可以基于你提供的prompt中的内容进行回答的时候,就需要用到这个东西了。

你可以把Few-shot prompt templates看做是简单的知识库,后面我们会具体讲解如何搭建自己的知识库。
现在先提前了解一下它的魅力吧。

带few shot examples的例子

加入现在我要问chatgpt这样一个问题:

请问工具人的代表作是什么?

因为这里的工具人是我虚拟出来的一个人,真实并不存在,所以chatgpt的回答可能是下面这样的:

工具人的代表作是迈克尔·佩拉的《开膛手杰克》。

因为chatgpt对不会的东西可能会乱回答,所以上面的答案是在合理范围之内的。

那么怎么才能让chatgpt按照我们虚构的内容进行回答呢?

答案就是在prompt中提供有用的信息,比如下面这样子:

问题: 请帮忙描述下古龙?
回答: 姓名:古龙,出生日期:1937年,代表作:《楚留香传奇系列》、《陆小凤系列》、《萧十一郎系列》问题: 请帮忙描述下金庸?
回答: 姓名:金庸,出生日期:1924年,代表作:《射雕英雄传》、《神雕侠侣》、《天龙八部》问题: 请帮忙描述下工具人?
回答: 姓名:工具人,出生日期:1988年,代表作:《工具人传奇》、《工具人上班》、《工具人睡觉》问题: 请问工具人的代表作是什么?

下面是chatgpt的回答:

工具人的代表作是《工具人传奇》、《工具人上班》和《工具人睡觉》。

所以大家想到了什么?

没错,就是可以使用prompt中的信息做知识库,让chatgpt从这个给定的知识库中查询出有用的东西,然后再用自己的语言组织起来,返回给用户。

在langchain中使用FewShotPromptTemplate

实际上,上面的问题和答案都是promot内容的一部分,所以可以保存在PromptTemplate中。

而langchain有与之对应的专门的一个类叫做FewShotPromptTemplate。

上面的问答,其实可以保存在一个json数组中,然后再在FewShotPromptTemplate中使用:

from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplateexamples = [{"question": "请帮忙描述下古龙?","answer": 
"""
姓名:古龙,出生日期:1937年,代表作:《楚留香传奇系列》、《陆小凤系列》、《萧十一郎系列》
"""},{"question": "请帮忙描述下金庸?","answer": 
"""
姓名:金庸,出生日期:1924年,代表作:《射雕英雄传》、《神雕侠侣》、《天龙八部》
"""},{"question": "请帮忙描述下工具人?","answer":
"""
姓名:工具人,出生日期:1988年,代表作:《工具人传奇》、《工具人上班》、《工具人睡觉》
"""}
]

首先我们来看一下FewShotPromptTemplate中都有哪些属性:

   examples: Optional[List[dict]] = None"""Examples to format into the prompt.Either this or example_selector should be provided."""example_selector: Optional[BaseExampleSelector] = None"""ExampleSelector to choose the examples to format into the prompt.Either this or examples should be provided."""example_prompt: PromptTemplate"""PromptTemplate used to format an individual example."""suffix: str"""A prompt template string to put after the examples."""input_variables: List[str]"""A list of the names of the variables the prompt template expects."""example_separator: str = "\n\n""""String separator used to join the prefix, the examples, and suffix."""prefix: str = """""A prompt template string to put before the examples."""template_format: str = "f-string""""The format of the prompt template. Options are: 'f-string', 'jinja2'."""validate_template: bool = True"""Whether or not to try validating the template."""

其中examples和example_selector是可选的,其他的都是必须的。

example_prompt是用来格式化一个特定example的PromptTemplate。

如下所示:

example_prompt = PromptTemplate(input_variables=["question", "answer"], template="问题: {question}\n 回答:{answer}")print(example_prompt.format(**examples[0]))
问题: 请帮忙描述下古龙?
回答: 姓名:古龙,出生日期:1937年,代表作:《楚留香传奇系列》、《陆小凤系列》、《萧十一郎系列》

上面代码中,我们使用PromptTemplate对队列中的数据进行了格式化。

有了examples和example_prompt,我们就可以构建FewShotPromptTemplate了:

prompt = FewShotPromptTemplate(examples=examples, example_prompt=example_prompt, suffix="问题: {input}", input_variables=["input"]
)print(prompt.format(input="请问工具人的代表作是什么?"))

这里输出的内容和我们最开始的内容是一样的。

使用ExampleSelector

在上面的例子中,我们实际上是把所有的shot examples都提交给了大语言模型,但实际上并不是必须的。因为有些examples跟问题是没有关联关系的。

所以langchain给我们提供了一个类叫做ExampleSelector,可以通过这个selector来选择跟我们问题相关的一些examples,从而减少不必要的内容传输。

这里我们使用SemanticSimilarityExampleSelector,它的作用是根据语义的相似度来选择examples:

from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddingsexample_selector = SemanticSimilarityExampleSelector.from_examples(# 要选择的examplesexamples,# embedding用来判断文本的相似度OpenAIEmbeddings(),# 向量数据库,用来存储embeddingsChroma,# 最终要选择的长度k=1
)# 选择最为相似的作为输入
question = "请问工具人的代表作是什么?"
selected_examples = example_selector.select_examples({"question": question})
print(f"下面是和这个问题最相似的examples: {question}")
for example in selected_examples:print("\n")for k, v in example.items():print(f"{k}: {v}")

最后,我们同样的把ExampleSelector和FewShotPromptTemplate结合起来一起使用:

prompt = FewShotPromptTemplate(example_selector=example_selector, example_prompt=example_prompt, suffix="问题: {input}", input_variables=["input"]
)print(prompt.format(input="请问工具人的代表作是什么?"))

总结

如果你有一些简单的内容需要提供给大语言模型,那么可以使用这个方式。但是如果你有很多内容的话,比如知识库。这种实现就处理不了了。那么如何构建一个知识库应用呢?我们后续分享。

http://www.yayakq.cn/news/36480/

相关文章:

  • 在阿里云上建立网站的步骤灵宝网站建设
  • 西宁手机网站建设wordpress婚纱摄影主题
  • 电商网站的制作流程怎么做网站icp备案
  • 虹口上海网站建设建设公司营业执照
  • 网站建设和优化泉港区规划建设局网站
  • 免费开网站店铺logo图片免费生成女士
  • 天津做网站哪家比较好招聘网站建设销售
  • 如何提高网站设计能力网站访问跳出率
  • 武义做网站网站开发的步骤
  • php实战做网站视频教程胖咯科技网站建设
  • 微信手机官方网站建设书法网站的主题是
  • 疯狂购网站开发商官方网站建设维护合作协议
  • 怎样建立网站免费的网站设计沟通
  • 新闻类网站开发多久做英文网站的流程
  • 衡水网站设计公司哪家好网站建设工作领导小组
  • 招聘网站做一下要多少钱丹东有做公司网站的吗
  • 山西小城故事网站建设画册排版设计模板
  • 那个网站可以做宣传新建的网站打不开
  • 广州外贸网站建设代账公司如何拉客户
  • 怎么做卖橘子的网站上海企业登记在线平台
  • 做网站买空间多少钱短视频营销成功的案例
  • 如何选择做pc端网站word 发布 wordpress
  • 北京建设工程信息网网站seo排名关键词点击
  • 哈尔滨站建好了吗怎么注册网站个人
  • 公司网站做门户备案曲靖网站制作公司
  • 手机模板网站生成制作软件微网站界面设计
  • 甘肃企业建站系统费用全球设计师网
  • 网站建设开公司现在好做吗北京装修公司电话名单
  • 东莞网站建站公司jsp借书网站开发
  • 信阳做网站优化网络服务公司是做什么的