当前位置: 首页 > news >正文

网站客户续费wordpress二次开发教程

网站客户续费,wordpress二次开发教程,三维家3d设计软件免费,互联网营销师教学大纲整数唯一分解定理,也称为算术基本定理,是由德国数学家高斯在其著作《算术研究》中首次提出的。本文回顾整数唯一分解定理以及对应的几个重要结论。 一、整数唯一分解定理 整数唯一分解定理,也称为算术基本定理,是数论中的一个重…

整数唯一分解定理,也称为算术基本定理,是由德国数学家高斯在其著作《算术研究》中首次提出的。本文回顾整数唯一分解定理以及对应的几个重要结论。
在这里插入图片描述

一、整数唯一分解定理

整数唯一分解定理,也称为算术基本定理,是数论中的一个重要定理。它指的是每个大于1的整数都可以唯一地表示为几个素数的乘积,而且这些素数的幂都是正整数。
n = p 1 a 1 ∗ p 2 a 2 ∗ … ∗ p k a k (1) n = p_1^{a_1} * p_2^{a_2} * … * p_k^{a_k}\tag1 n=p1a1p2a2pkak(1)

整数唯一分解的C++代码如下:

void IntDecompose(int n) {map<int,int> maps;  		//存储质数以及对应的幂int i = 2, e = 0;while (n != 1) {if (n % i == 0) {n /= i;maps[i]++;}else i++;}auto it = maps.begin();		//输出n对应的分解结果cout << n << "=" << it->first << "^" << it->second;for (++it; it != maps.end(); ++it)cout << " * " << it->first << "^" << it->second;
}

二、数的约数个数

根据整数唯一分解定理,可以得到一个结论: n n n 的正约数的个数为:
F ( n ) = ( a 1 + 1 ) ∗ ( a 2 + 1 ) ∗ ⋯ ( a k + 1 ) (2) F(n) = (a_1+1)*(a_2+1)*\cdots (a_k+1)\tag2 F(n)=(a1+1)(a2+1)(ak+1)(2)
证明:对于 p i a i p_i^{a_i} piai, 它包含的因子有: p i 0 , p i 1 , p i 2 , ⋯ , p i a i p_i^0, p_i^1,p_i^2,\cdots ,p_i^{a_i} pi0,pi1,pi2,,piai a i + 1 a_i+1 ai+1个因子。同时,还可以进行组合,具体而言,可以
p 1 p_1 p1中取1个因子,有 a i + 1 a_i+1 ai+1种取法;
p 2 p_2 p2中取1个因子,有 a 2 + 1 a_2+1 a2+1种取法;
…;
p k p_k pk中取1个因子,有 a k + 1 a_k+1 ak+1种取法。
然后将他们连乘起来。
总的数目为: F ( n ) = ( a 1 + 1 ) ∗ ( a 2 + 1 ) ∗ ⋯ ( a k + 1 ) F(n) = (a_1+1)*(a_2+1)*\cdots (a_k+1) F(n)=(a1+1)(a2+1)(ak+1)

三、最大公约数和最小公倍数

给定两个数 x x x y y y,他们可以分解为相同素数的幂的乘积:
x = p 1 a 1 ∗ p 2 a 2 ∗ … ∗ p k a k x = p_1^{a_1} * p_2^{a_2} * … * p_k^{a_k} x=p1a1p2a2pkak y = p 1 b 1 ∗ p 2 b 2 ∗ … ∗ p k b k (3) y = p_1^{b_1} * p_2^{b_2} * … * p_k^{b_k} \tag3 y=p1b1p2b2pkbk(3)
例如:给定 x = 100 , y = 210 x = 100, y = 210 x=100,y=210 则:
100 = 2 2 ∗ 3 0 ∗ 5 2 ∗ 7 0 100 = 2^2 * 3^0 *5^2*7^0 100=22305270 210 = 2 1 ∗ 3 1 ∗ 5 1 ∗ 7 1 210=2^1 * 3^1 * 5^1 *7^1 210=21315171

3.1 最大公约数

给定式(3)所示的两个数 x , y x,y x,y, 它们的最大公约数为:
gcd ( x , y ) = p 1 m i n ( a 1 , b 1 ) ∗ p 2 m i n ( a 2 , b 2 ) ∗ … ∗ p k m i n ( a k , b k ) (4) \text{gcd}(x,y) = p_1^{min(a_1,b_1)} * p_2^{min(a_2,b_2)} * … * p_k^{min(a_k,b_k)} \tag4 gcd(x,y)=p1min(a1,b1)p2min(a2,b2)pkmin(ak,bk)(4)
简单证明:
首先, gcd ( x , y ) \text{gcd}(x,y) gcd(x,y) 一定能整除 x x x y y y。因为这里所有素数的幂都是取的较小者,即 p i p_i pi 的幂为 m i n ( a i , b i ) min(a_i,b_i) min(ai,bi), 所以 p i m i n ( a i , b i ) ∣ p i a i p_i^{min(a_i,b_i)} | p_i^{a_i} pimin(ai,bi)piai p i m i n ( a i , b i ) ∣ p i b i p_i^{min(a_i,b_i)} | p_i^{b_i} pimin(ai,bi)pibi。 因此 gcd ( x , y ) \text{gcd}(x,y) gcd(x,y) 一定能够整除 x x x y y y

那么,为什么 gcd ( x , y ) \text{gcd}(x,y) gcd(x,y) x x x y y y 的最大公约数呢?这里使用反证法。
假设 g g g 才是 x x x y y y 的最大公约数。
那么,必然存在 g g g 包含的某个素数 p i p_i pi 的指数 c i > m i n ( a i , b i ) c_i > min(a_i,b_i) ci>min(ai,bi)
但是,此时 p i c i p_i^{c_i} pici 要么不能整除 p i a i p_i^{a_i} piai, 要么不能整除 p i b i p_i^{b_i} pibi
因此, g g g 不能同时整除 x x x y y y
所以,与假设矛盾, gcd ( x , y ) \text{gcd}(x,y) gcd(x,y) 才是 x x x y y y 的最大公约数。

3.2 最小公倍数

给定式(3)所示的两个数 x , y x,y x,y, 它们的最小公倍数为:
lcm ( x , y ) = p 1 m a x ( a 1 , b 1 ) ∗ p 2 m a x ( a 2 , b 2 ) ∗ … ∗ p k m a x ( a k , b k ) (5) \text{lcm}(x,y) = p_1^{max(a_1,b_1)} * p_2^{max(a_2,b_2)} * … * p_k^{max(a_k,b_k)} \tag5 lcm(x,y)=p1max(a1,b1)p2max(a2,b2)pkmax(ak,bk)(5)
证明过程与最大公约数类似。

有了最大公约数和最小公倍数的定义,我们得出一个重要的结论:
x y = gcd ( x , y ) ∗ lcm ( x , y ) (4) xy = \text{gcd}(x,y)*\text{lcm}(x,y)\tag4 xy=gcd(x,y)lcm(x,y)(4)
因为 :
( p 1 m i n ( a 1 , b 1 ) ∗ p 2 m i n ( a 2 , b 2 ) ∗ … ∗ p k m i n ( a k , b k ) ) ∗ ( p 1 m a x ( a 1 , b 1 ) ∗ p 2 m a x ( a 2 , b 2 ) ∗ … ∗ p k m a x ( a k , b k ) ) = p 1 a 1 + b 1 ∗ p 2 a 2 + b 2 ∗ … ∗ p k a k + b k = x y \left(p_1^{min(a_1,b_1)} * p_2^{min(a_2,b_2)} * … * p_k^{min(a_k,b_k)}\right) *\left(p_1^{max(a_1,b_1)} * p_2^{max(a_2,b_2)} * … * p_k^{max(a_k,b_k)}\right) = p_1^{a_1+b_1} * p_2^{a_2+b_2} * … * p_k^{a_k+b_k}=xy (p1min(a1,b1)p2min(a2,b2)pkmin(ak,bk))(p1max(a1,b1)p2max(a2,b2)pkmax(ak,bk))=p1a1+b1p2a2+b2pkak+bk=xy

http://www.yayakq.cn/news/212084/

相关文章:

  • 沧州网站推广python官网下载安装
  • 网站开发属于什么岗位中国网络营销论坛
  • 河北省住房和建设厅网站有口碑的常州网站优化
  • mysql asp网站展厅策划设计公司
  • 自媒体平台企业网站怎么设置建设信息门户网站的条件
  • 江门营销型网站建设多少钱简单的企业网站源码
  • 90设计网站会员全站通与电商模板的区别智慧团建手机登录入口
  • 彩票网站开发制作wordpress 自动超链接
  • 自己做网站nas做网页局域网站点配置
  • 网站建设管理规范淘宝客 网站选择WORDPRESS
  • 网站做商业计划书吗网站的域名做邮箱
  • 龙华做手机网站美橙表业手表网站
  • 做微信平台图片网站济南莱芜金点子信息港
  • linux上安装wordpress网站排名优化多少钱
  • 昆明做网站多少钱wordpress主题域名授权破解版
  • 男女做爰视频网站在线织梦可以做淘宝客网站吗
  • 青岛房地产网站建设wordpress首页添加js
  • 少儿编程培训网站更换域名seo
  • 建设的网站大连哪里有手机自适应网站建设
  • 网站制作容易吗怎么样大庆互联网公司
  • 威海好的网站建设公司做国外网站翻译中国小说赚钱
  • 如何创建网站教程视频天津外贸seo推广
  • wordpress数据库地址惠州网站seo排名优化
  • 找合伙做网站的百度手机助手下载正版
  • wordpress 修改ssl东莞网站seo推广优化
  • 如何做外贸品牌网站建设青岛seo网站推广
  • 广州免费推广网站建设国外比较好的建筑设计网站
  • 企业模板网站建设优势分析企业建站框架
  • 北京网站公司制作大连自己的网站
  • 公关策划网站建设微网站界面尺寸