当前位置: 首页 > news >正文

如何编写网站建设个人网站的主题

如何编写网站建设,个人网站的主题,登封快乐送餐在那个网站做的广告,四川企业网站模板步骤连续干预 在这个示例中,我们使用LinearDML模型,使用随机森林回归模型来估计因果效应。我们首先模拟数据,然后模型,并使用方法来effect创建不同干预值下的效应(Conditional Average Treatment Effect,CATE&…

连续干预

在这个示例中,我们使用LinearDML模型,使用随机森林回归模型来估计因果效应。我们首先模拟数据,然后模型,并使用方法来effect创建不同干预值下的效应(Conditional Average Treatment Effect,CATE)。

请注意,实际情况中的数据可能更加复杂,您可能需要根据您的数据和问题来适当选择的模型和参数。此示例仅供参考,您可以根据需要进行修改和扩展。

import numpy as np
from econml.dml import LinearDML# 生成示例数据
np.random.seed(123)
n_samples = 1000
n_features = 5
X = np.random.normal(size=(n_samples, n_features))
T = np.random.uniform(low=0, high=1, size=n_samples)  # 连续干预变量
y = 2 * X[:, 0] + 0.5 * X[:, 1] + 3 * T + np.random.normal(size=n_samples)# 初始化 LinearDML 模型
est = LinearDML(model_y='auto', model_t='auto', random_state=123)# 拟合模型
est.fit(y, T, X=X)# 给定特征和连续干预值,计算干预效应
X_pred = np.random.normal(size=(10, n_features))  # 假设有新的数据点 X_pred
T_pred0 = np.array([0]*10)  # 指定的连续干预值
T_pred11 = np.array([0.2, 0.4, 0.6, 0.8, 1.0, 0.3, 0.5, 0.7, 0.9, 0.1])  # 指定的连续干预值
T_pred1 = np.array([0.2]*10)  # 指定的连续干预值
T_pred2 = np.array([0.4]*10)  # 指定的连续干预值
T_pred3 = np.array([0.6]*10)  # 指定的连续干预值
T_pred4 = np.array([0.8]*10)  # 指定的连续干预值# 计算连续干预效应
effect_pred = est.effect(X=X_pred, T0=T_pred0, T1=T_pred11)print("预测的连续干预效应:", effect_pred)# 计算连续干预效应
effect_pred = est.effect(X=X_pred, T0=T_pred0, T1=T_pred1)print("预测的连续干预效应:", effect_pred)

The R Learner is an approach for estimating flexible non-parametric models of conditional average treatment effects in the setting with no unobserved confounders. The method is based on the idea of Neyman orthogonality and estimates a CATE whose mean squared error is robust to the estimation errors of auxiliary submodels that also need to be estimated from data:

  1. the outcome or regression model

  2. the treatment or propensity or policy or logging policy model

使用随机实验数据进行双重机器学习(DML)训练可能会在某些情况下获得更好的效果,但并不是绝对的规律。DML方法的性能取决于多个因素,包括数据质量、特征选择、模型选择和调参等。

使用随机实验数据进行训练的优势在于,实验数据通常可以更好地控制混淆因素,从而更准确地估计因果效应。如果实验设计得当,并且随机化合理,那么通过DML训练的模型可以更好地捕捉因果关系,从而获得更准确的效应估计。

然而,即使使用随机实验数据,DML方法仍然需要考虑一些因素,例如样本大小、特征的选择和处理、模型的选择和调参等。在实际应用中,没有一种方法可以适用于所有情况。有时,随机实验数据可能会受到实验设计的限制,或者数据质量可能不足以获得准确的效应估计。

因此,使用随机实验数据进行DML训练可能会在某些情况下获得更好的效果,但并不是绝对的规律。在应用DML方法时,仍然需要根据实际情况进行数据分析、模型选择和验证,以确保获得准确和可靠的因果效应估计。

连续干预/label01

import numpy as np
from econml.dml import LinearDML
import scipy# 生成示例数据
np.random.seed(123)
n_samples = 1000
n_features = 5
X = np.random.normal(size=(n_samples, n_features))
T = np.random.uniform(low=0, high=1, size=n_samples)  # 连续干预变量
#y = 2 * X[:, 0] + 0.5 * X[:, 1] + 3 * T + np.random.normal(size=n_samples)
y = np.random.binomial(1, scipy.special.expit(X[:, 0]))# 初始化 LinearDML 模型
est = LinearDML(model_y='auto', model_t='auto', random_state=123)# 拟合模型
est.fit(y, T, X=X)# 给定特征和连续干预值,计算干预效应
X_pred = np.random.normal(size=(10, n_features))  # 假设有新的数据点 X_pred
T_pred0 = np.array([0]*10)  # 指定的连续干预值
T_pred11 = np.array([0.2, 0.4, 0.6, 0.8, 1.0, 0.3, 0.5, 0.7, 0.9, 0.1])  # 指定的连续干预值
T_pred1 = np.array([0.2]*10)  # 指定的连续干预值
T_pred2 = np.array([0.4]*10)  # 指定的连续干预值
T_pred3 = np.array([0.6]*10)  # 指定的连续干预值
T_pred4 = np.array([0.8]*10)  # 指定的连续干预值# 计算连续干预效应
effect_pred = est.effect(X=X_pred, T0=T_pred0, T1=T_pred11)print("预测的连续干预效应:", effect_pred)
预测的连续干预效应: [-0.00793674  0.00612109  0.03141778  0.00310806 -0.01635394 -0.019054340.06801354 -0.0126543  -0.04603434  0.00821044]

dml原理

Double Machine Learning, DML。

方法:首先通过X预测T,与真实的T作差,得到一个T的残差,然后通过X预测Y,与真实的Y作差,得到一个Y的残差,预测模型可以是任何ML模型,最后基于T的残差和Y的残差进行因果建模。
原理:DML采用了一种残差回归的思想。
优点:原理简单,容易理解。预测阶段可以使用任意ML模型。
缺点: 需要因果效应为线性的假设。
应用场景:适用于连续Treatment且因果效应为线性场景
 

单调性约束

因果推断的开源包中,有一些可以进行单调性约束的案例。这些案例通常涉及到因果效应的估计,同时加入了单调性约束以确保结果更加合理和可解释。以下是一些开源包以及它们支持单调性约束的案例示例:

  1. CausalML(https://causalml.readthedocs.io/):

    • CausalML 是一个开源的因果推断工具包,支持单调性约束。它提供了一些可以用于处理单调性约束的方法,例如 SingleTreatment 类。您可以使用该包来在处理因果效应时添加单调性约束。
  2. econml(https://econml.azurewebsites.net/):

    • econml 也是一个用于因果推断的工具包,支持单调性约束。它提供了一些工具,如 SingleTreePolicyInterpreterSingleTreeCateInterpreter,用于解释单一决策树的因果效应,并且可以根据用户指定的特征添加单调性约束。
SingleTreeCateInterpreter(_SingleTreeInterpreter):"""An interpreter for the effect estimated by a CATE estimatorParameters----------include_model_uncertainty : bool, default FalseWhether to include confidence interval information when building asimplified model of the cate model. If set to True, thencate estimator needs to support the `const_marginal_ate_inference` method.uncertainty_level : double, default 0.05The uncertainty level for the confidence intervals to be constructedand used in the simplified model creation. If value=alphathen a multitask decision tree will be built such that all samplesin a leaf have similar target prediction but also similar alphaconfidence intervals.uncertainty_only_on_leaves : bool, default TrueWhether uncertainty information should be displayed only on leaf nodes.If False, then interpretation can be slightly slower, especially for catemodels that have a computationally expensive inference method.

http://www.yayakq.cn/news/381173/

相关文章:

  • 网站的登录弹窗怎么做wordpress采集图片插件
  • 网站建设需要服务器手机版刷赞网站建设
  • 网上商城网站建设wordpress登陆后可见页
  • 网站建设方案大全国内建网站流程
  • flash网站模板下载做外贸用什么网站
  • 网站信息维护亳州公司做网站
  • 学生做网站期末作业乐清论坛网乐清
  • 购买深圳网站定制开发市场调研公司存在的意义
  • 外贸网站排行赣州网上中介服务超市
  • 尼罗发表小说做的的网站是哪个wordpress 增强编辑器
  • 唐山网站制作app建筑网站 法人签字
  • 营销型网站架构师网站建设多少钱合适
  • wordpress wdone用二级域名做网站对seo
  • 阿里云模板建站教程网站和app的开发成本
  • 手机端公司网站怎么做如何做网站产品经理
  • 东八区网站建设wordpress产品展示主题
  • 做p2p网站卖赚钱吗江西建筑培训网
  • 做羞羞的专门网站二级域名免费分发站
  • 无锡所有网站设计制作优惠券网站建设制作
  • 怎么改网站模板温州网站制作计划
  • 专做服装的网站分类信息网站
  • 大型新型网站云服务器便宜
  • 有什么发布做投标报价的网站重庆怎么在网站上做广告
  • 做网站除了有服务器还需要什么小程序电商模板
  • 外贸网站建设平台有哪些网站备案安全承诺书
  • 好看的网站 你明白吗个人网站如何备案
  • 青岛煜鹏网站建设公司网站建设目录结构
  • 网站要怎么做才能让360收录广阳区建设局网站
  • 买衣服的网站排行榜游戏网站建设免费版
  • 做英文网站有哪些深圳品牌策划vi设计