建设个人你网站深圳罗湖高端网站建设
矩阵分析与应用1-矩阵代数基础
- 1 矩阵的基本运算
 - 2 矩阵的初等变换
 - 3 向量空间、线性映射与Hilbert空间
 - 4 内积与范数
 - 5 随机向量
 - 6 矩阵的性能指标
 - 7 逆矩阵与伪逆矩阵
 - 8 Moore-Penrose逆矩阵
 - 9 矩阵的直和与Hadamard积
 - 10 Kronecker积与Khatri-Rao积
 - 11 向量化与矩阵化
 - 12 稀疏表示与压缩感知
 
1 矩阵的基本运算
物理问题的数学化,数学结果的物理化:从物理问题的数学建模出发,引出矩阵问题,对得到的矩阵分析结果尽可能给予物理解释,赋予物理含义。即物理问题->数学抽象->数学演算->形象解释。
 向量是矩阵的特例,标量是向量的特例,所以,满足矩阵运算的法则必然满足数量的运算。
 对矩阵的函数运算,可以化为幂级数的运算形式,其幂级数的运算形式和标量函数的幂级数的运算形式完全一样。
