当前位置: 首页 > news >正文

什么网站可以做全景图判断网站首页

什么网站可以做全景图,判断网站首页,dedecms做地方网站,巩义做网站汉狮公司分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测 目录 分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测&#xff0…

分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测

目录

    • 分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于开普勒算法(KOA)优化卷积神经网络(CNN)分类预测。
2023年新算法KOA-CNN开普勒优化卷积神经网络的数据分类预测,MATLAB程序,多行变量特征输入,优化了学习率、卷积核大小及卷积核个数等,方便增加维度优化自它参数
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序%% 函数评估t时的最差适应度值worstFitness = Order(SearchAgents_no);                  %% Eq.(11)M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)%% 计算表示太阳与第i个解之间的欧几里得距离Rfor i = 1:SearchAgents_noR(i) = 0;for j = 1:dimR(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)endR(i) = sqrt(R(i));end%% 太阳和对象i在时间t的质量计算如下:for i = 1:SearchAgents_nosum = 0;for k = 1:SearchAgents_nosum = sum + (PL_Fit(k) - worstFitness);endMS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)end%%2步:定义引力(F)% 计算太阳和第i个行星的引力,根据普遍的引力定律:for i = 1:SearchAgents_noRnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MSMnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的mFg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_noa1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
endfor i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置%%6步:更新与太阳的距离(第345在后面)
if rand < rand% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离h = (1 / (exp(n * randn))); %% Eq.(27)% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 10,...                 % 最大训练次数 'MiniBatchSize',best_hd, ...'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率
%% 训练
; 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.yayakq.cn/news/260945/

相关文章:

  • 网站分析与优化网站设计怎么做背景颜色
  • 网站建设报价单模板下载网店美工需要掌握哪些软件
  • 住房和城乡建设部官方网站已网站开发哪里接到单子的
  • 品牌网站建设设计公司代备案域名30元
  • 爱淘苗网站开发模式网页设计模板百度云
  • 网站优化员seo招聘电影网站怎么做不犯法
  • 安阳企业网站优化外包个人建站提供软件下载
  • 备案期间网站能打开吗美词原创网站建设
  • 目前做汽配的网站有哪些wordpress 添加外观
  • 微商城网站建设渠道勒流有做网站的吗
  • 网络营销网站设计网站首页的布局设计
  • 做名人故居的网站多少钱手机商城页面设计
  • wordpress怎么添加网盘下载南阳seo优化公司
  • 电子商务网站创建过程wordpress 中文 相册插件
  • 建设银行广东分行网站浏览器主页网址
  • 济南网站建设维护东城做企业网站多少钱
  • 靖江网站设计好看的网站后台界面
  • 网站风格总结网站建设心得感想
  • 普陀区建设局网站WordPress上传文件格式
  • 天津网站建设推广服务泉州关键词排名
  • 做商城网站哪里好网站横向菜单
  • 许昌工程建设信息网站wordpress 发布时间不对
  • wordpress 上传安装网站seo 文章转载 修改标题
  • 广西建设工程造价管理协会网站做文字图片的网站
  • 做网站什么职业网站建设域名什么意思
  • 整站优化外包服务律师做网站费用
  • 建设银行网银显示网站丢失flash网站建设技术精粹
  • 佛山 网站建设 骏域互动网站建设什么意思
  • 网站建设与制作教案八爪鱼采集器WordPress接口
  • 济南智能网站建设做简单网站怎么做