当前位置: 首页 > news >正文

网站模板红黑域名怎么选才正确

网站模板红黑,域名怎么选才正确,抖音优化,建设网站群的指导思想1、背景介绍 当前社会信息化高速发展,网络信息共享加速互通,数据呈现出规模大、流传快、类型多以及价值密度低的特点。人们可以很容易地对各类数据实现采集、发布、存储与分析,然而一旦带有敏感信息的数据被攻击者获取将会造成个人隐私的严重…

1、背景介绍

当前社会信息化高速发展,网络信息共享加速互通,数据呈现出规模大、流传快、类型多以及价值密度低的特点。人们可以很容易地对各类数据实现采集、发布、存储与分析,然而一旦带有敏感信息的数据被攻击者获取将会造成个人隐私的严重泄漏;所以在发布数据前,必须通过适当的隐私保护手段来隐藏敏感信息,从而达到能够发布和分析同时又保障隐私信息安全性的目的。

然而,实际中大部分数据脱敏方法(如假名化、字符屏蔽)仍存在隐私风险,经过这些脱敏处理后的数据经过发布后可能遭受一系列的攻击,包括重标识攻击、背景知识攻击、链接攻击以及隐私推理攻击。 为了抵抗以上一些攻击,K-匿名、等价匿名是较为常用的匿名处理方法,对其进行合理应用能够在数据分析时减少安全隐患风险问题发生。其中K-匿名算法具有实用性,属于新型算法的一种,为了抵抗常见的链接攻击,比较科学的数据发布脱敏都会采用K-匿名的手段对数据进行处理,但该方法对敏感属性值的分布未做任何具体限制,因此就会存在背景知识攻击以及同质攻击。

为了得到风险小且信息损失量小的发布数据集,需在发布脱敏数据集之前应对其进行评估,若评估后的脱敏数据集质量达到用户对数据价值要求同时攻击者很难窃取敏感信息,那么就可以发布。本文讨论的风险评估算法也是基于匿名化处理数据的风险评估,也适用于其他脱敏算法。

2、K匿名相关知识简介

     根据发布数据集的内容不同,数据集存在的风险也不同;如何去量化的评估数据集存在的风险,就应该先对数据的敏感级别进行一个合理的划分。行业已经有相关的规范,如《信息安全技术个人信息去标识化效果分级评估规范》中对数据敏感级别定义了如下的划分规则:

  • 个人信息标识度分级

图1 示例数据(注:包括身份证和电话号码等个人数据均为假数据,仅为示例目的)

结构化数据以表的形式表示,每一行表示一条记录(record),每一列表示一个属性(attribute)。每一个记录与一个特定用户/个体关联。这些属性可以分为四类:

标识符(explicit identifiers attribute:可以直接确定一个个体。如:身份证号,姓名等单个属性值。

准标识符(Quasi-identifler attributeQID):可以和外部表连接来识别个体的最小属性集。如Fig1中的 { 年龄,性别,邮编 }组合。

敏感属性(Sensitive attribute:用户不希望被人知道的数据。如:电话号码、所患疾病等。可以认为数据表中有价值的数据除了标识符和准标识符之外都是敏感数据。

非敏感属性(Non-sensitive attribute:可以直接公开,无任何危险的数据,如序号。

等价组(等价类)所有准标识符对应的值相同的数据划分到一个组。

基于以上的概念定义,基于K-匿名的脱敏处理就是要保证准标识符集的非唯一性,即等价组中最小的个数必须大于等于K。

  • 安全隐患样例

图2链接攻击

图2右图是一张某医院收集的病人信息,其中已经抹去了姓名、身份证号等信息)。但是,直接发布这样简单处理的数据并不安全。因为数据接收者(recipient)可能知道其他个人信息,比如上面表一是一张投票信息表。那么recipient就可以通过比对Birthdate、Sex 和 Zipcode 的值得知 Andre 患有Flu。这种通过某些属性与外部表连接的攻击称为链接攻击。

K-匿名样例

图3 3-匿名化

K-匿名思想十分朴素。它首先做了如下假设:

准标识符假设:数据持有者可以识别出其所持有数据表中可能出现在外部数据中的属性,因此其可以准确的识别出准标识符集合。

K-匿名要求同一个准标识符至少要有k条记录。因此观察者无法通过准标识符进行记录连接。如图3(*号遮蔽只是一种方法)。

等价组

把拥有相同准标识符的所有记录称为一个等价类(equivalence class)。K-匿名即是要求同一等价类中的记录不少于K条。把等价类的大小组成的集合称为频率集(frequency fet)。如图4就是一个按K=3处理后的数据集,{1,2,3},{4,5,6},{7,8,9}分别为一个等价组。

等价组是一个多重集(multiset),即其中可以有相同的元素。频率集应该也是多重集。

K-匿名使得观察者无法以高于1/K的置信度通过准标识符来识别用户。 

三、隐私的定义与度量

隐私,就是个人、机构等实体不愿意被外部世界知晓的信息。在具体应用中,隐私即为数据所有者不愿意被披露的敏感信息,包括敏感数据以及数据所表征的特性。我们常说的个人信息安全,就是保护用户的隐私安全。

个人敏感数据通常也称隐私数据,这些数据包括用户姓名、电话和身份证号码及银行卡号或其他一些私人信息。这些信息只要稍微被泄露出去,往往会紧密地关联到人们的日常生活,或多或少会造成一些损失,然而要是用户数据信息影响到用户的信用问题,则又会波及用户在财务或者法律方面的一些问题,造成严重损失。随着现代化大数据的应用越来越广泛,应用到该技术的相关工作单位也同样给予了大数据足够的重视度,为的就是能够实现双方利益的共赢,互惠互利。

数据安全与隐私相关技术受到的重视程度越来越高,因此聚焦“敏感数据”,创新实践“零信任”安全理念,围绕数据产生、传输、存储、使用、共享、销毁外加数据管理的全生命周期,并结合数据安全相关的法律法规《国家安全法》《网络安全法》以及即将出台的《数据安全法》《个人信息保护法》,构建由内到外主动式纵深防御体系尤为重要;其中每个周期中核心技术能力诉求如图5所示。

图5 数据生命周期

一般的,从隐私所有者的角度而言,隐私可以分为两类:

个体隐私(Individual Privacy)

任何可以确认特定个人或可以确认个人相关,但个人不愿意被暴露的信息,都叫做个人隐私,如个人身份证号码、就诊号。

共同隐私(Corporate Privacy)

共同隐私不仅包含个人的隐私,还包含所有个体共同表现出,但不愿意被暴露的信息。如公司员工的平均薪资、薪资分布等信息,再如两个人之间的关系信息。

隐私的度量与量化表示

数据隐私的保护效果是通过攻击者披露隐私的多寡来侧面反映的。现有的隐私度量都可以统一用“披露风险”(Disclosure Risk)来描述。

披露分险表示攻击者根据所发布的数据和其他背景知识(Background Knowledge),可能披露隐私的概率。通常,关于隐私数据的背景知识越多,披露风险就越大。

s表示敏感数据,事件Sk表示“攻击者在背景知识K的帮助下披露敏感数据s”,则披露风险r(s,K)表示为

r(s,K)=Pr(Sk)

对数据集而言,若数据集所有者最终发布数据集D的所有敏感数据的披露风险都小于阈值a,aϵ[0,1],则称该数据集的披露风险为a

---------------------------------------------------------------------------------------------------------------------------------

感谢你的打赏

---------------------------------------------------------------------------------------------------------------------------------

http://www.yayakq.cn/news/424117/

相关文章:

  • 西安 网站 高端 公司做电影网站投资多少
  • 资深的网站推广浙江省城乡建设住房厅网
  • 摄影网站建站德州网站怎样建设
  • 淘宝客怎么自己做网站wordpress 表单 采集
  • 东阿聊城做网站的公司保定便宜的网站制作
  • 网站建设有利点沉默是金歌词谐音对照
  • 国家建设工程网官方网站一般做外单的有哪些网站
  • 镇江微网站建设西安开发网站的公司
  • 做网站图片要求微享网络网站建设
  • 集团网站建设计划表百度泰州网站建设方案推广
  • 天津南昌网站建设搜索风云榜百度
  • 做我的世界缩略图的网站微信小程序开发实训报告
  • 保定哪家做网站好郑州哪里有做网站
  • php网站源码建设教程企业网站能个人备案吗
  • 云尚网络科技有限公司网站建设安徽建设厅网站节能北备案
  • 沃尔玛超市网上购物搜索网站排名优化策略
  • 福建省建设工程信息网站网络设计目标
  • 网站网站怎么做代理深圳网站设计兴田德润i简介
  • 房产网站怎么做在线做生存曲线的网站有哪些
  • html5网站布局教程凡科登录入口app下载
  • qq群排名优化软件在广州做seo找哪家公司
  • 手机代码网站有哪些问题地方门户网站发展趋势
  • 如何在微信上开发小程序南阳网站seo推广公司
  • 国外好的做电视包装的网站官方制作网站
  • 专业做网站公司排名抓取网站访客qq
  • 旅行社网站建设需求分析网页设计购物网站建设
  • wordpress 精彩台州网站建设seo
  • 什么是响应式网站建设dz地方门户网站制作
  • 嘉兴信息网站莱芜红石公园灵异事件
  • 网站建设 南昌漳州市网站建设费用