当前位置: 首页 > news >正文

东莞朝阳企讯网做的网站西安抖音seo推广

东莞朝阳企讯网做的网站,西安抖音seo推广,网站对图片优化吗,asp.net 网站写好后如何运行提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、文件读取1.以pd.read_csv()为例:2.数据查看 二、数据离散化、排序1.pd.cut()离散化,以按范围加标签为例2. pd.qcut()实现离散化3.排序4.…

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 一、文件读取
    • 1.以pd.read_csv()为例:
    • 2.数据查看
  • 二、数据离散化、排序
    • 1.pd.cut()离散化,以按范围加标签为例
    • 2. pd.qcut()实现离散化
    • 3.排序
    • 4.Series.map()&Series.apply()
  • 三、数据处理
    • 1.发现缺失值
    • 2.剔除缺失值
    • 3.填充缺失值
      • 1)固定值填充
      • 2)前向填充&后向填充
    • 4.df.replace()
    • 5.重复值处理
    • 6.四分位法识别异常值
  • 四、分组、索引及聚合
    • 1.分组函数
    • 2.索引设置与重置
      • 1)重置索引
      • 2)设置索引
      • 3)索引排序
    • 3.分组后常见操作
      • 1)分组后聚合
      • 2)分组后过滤filter
      • 3)分组后过滤transform
      • 4)分组后过滤apply

一、文件读取

方法:

  • pd.read_csv()
  • pd.read_excel()
  • pd.read_json()
  • pd.read_sql()
  • pd.read_xml()

1.以pd.read_csv()为例:

在这里插入图片描述

2.数据查看

在这里插入图片描述
在这里插入图片描述
df.describe()方法只针对数值列的描述性统计
在这里插入图片描述
统计出现次数
在这里插入图片描述

二、数据离散化、排序

1.pd.cut()离散化,以按范围加标签为例

在这里插入图片描述

2. pd.qcut()实现离散化

cut是根据每个值进行离散化,qcut是根据每个值出现的次数进行离散,也就是基于分位数的离散化功能
在这里插入图片描述

3.排序

  • df.sort_index():按照默认索引按正序排序
    在这里插入图片描述
  • data1.sort_values()按照实际值排序
    在这里插入图片描述
  • Series.nlargest()获取前N个最大值,与之相对于的为Series.nsmallest()
    在这里插入图片描述

4.Series.map()&Series.apply()

  • Series.map()
    map()是Series中特有方法,通过它实现对Series每个元素互换
    在这里插入图片描述

  • Series.apply()和df.apply()
    apply()在对Series操作时,会作用到每个值上,在对DataFrame操作时,会作用到所有行或列(通过axis控制)
    在这里插入图片描述

  • df.applymap()
    applymap方法针对与DataFrame,其效果类似于apply对series的效果

  • pandas中map()、apply()、applymap()的区别:
    1、map()方法适用于Series对象,作用于Series里的一个个元素,可以通过字典或函数类对象来构建映射关系对Series对象进行转换;
    2、apply()方法适用于Series对象、DataFrame对象、Groupby对象Series.apply()作用于Series里的一个个元素df.apply()处理的是行或列数据(本质上处理的是单个Series),用函数类对象来构建映射关系对Series对象进行转换;
    3、applymap()方法用来处理DataFrame对象的单个元素值,作用于df中的一个个元素,也是使用函数类对象映射转换;

三、数据处理

1.发现缺失值

在这里插入图片描述

2.剔除缺失值

df.dropna():

  • how:how为all时,只有当该列(或行)全部缺失时,才会将该列删除;为any时,当该列(或行)有缺失时,会将该列删除
  • thresh:设置非缺失值个数,axis=1当该列非缺失值个数大于等于设置的值时,该列保留,否则删除

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.填充缺失值

df.fillna()
填充思路

  • 根据业务知识填充
  • 连续性变量缺失值的填充(均值、众数)
  • 分类型变量缺失值的填充(众数)
  • 预测值填充

1)固定值填充

在这里插入图片描述

2)前向填充&后向填充

  • 前向填充:取前一个值填充
  • 后向填充:取后一个值填充
    在这里插入图片描述

4.df.replace()

有些异常值“-”,不是缺失值,但程序无法处理,需要换成程序可失败的缺失值
在这里插入图片描述

5.重复值处理

df.drop_duplicates()

  • 不传参时,删除一模一样的数据,并保留出现的第一条
  • keep:first、last、false数据保留原则
  • subset用作字段判断依据
    在这里插入图片描述

6.四分位法识别异常值

在这里插入图片描述

四、分组、索引及聚合

1.分组函数

groupby函数之间按组进行迭代,每一组都是Series或DataFrame
在这里插入图片描述

2.索引设置与重置

在这里插入图片描述

1)重置索引

在这里插入图片描述

2)设置索引

在这里插入图片描述

3)索引排序

在这里插入图片描述

3.分组后常见操作

1)分组后聚合

groupby().aggregate()方法,填入对应字典映射,即可查看数据中位数、均值,合计

在这里插入图片描述

2)分组后过滤filter

在这里插入图片描述

3)分组后过滤transform

groupby().transform()方法,在数据转换之后的形状和原来是一样的,但并不是单纯的将一列数据转换,而是对分组之后的小组数据内部按照相同的逻辑和组内指标进行转换,常见的例子是实现组内数据标准化
在这里插入图片描述

4)分组后过滤apply

输入一个分组的DataFrame进行apply(),可以返回一个DataFrame或Series或一个标量。
group和apply的组合操作可以适应apply()返回的结果类型
在这里插入图片描述

http://www.yayakq.cn/news/418570/

相关文章:

  • 新网站的宣传推广上海开办企业一窗通网上服务平台
  • 对互联网网站的理解企业网站互动交流模块
  • 计算机一级考试网站怎么做郴州在哪里
  • 宁德市城乡建设局网站个人购物网站怎么做
  • 网站建设领导讲话稿绍兴在线制作网站
  • 手机上怎么制作网站吗抚州网站开发
  • 汽车之家 网站建设视频音乐网站怎样建设
  • 中国贸易网站开通企业邮箱要钱吗
  • 目标网站都有哪些内容噼里啪啦免费观看高清动漫
  • 重庆綦江网站制作公司电话seo岗位是什么意思
  • 南通网站免费建设苏州好的网络科技公司
  • 怎么做二手网站代理贵阳网站关键字优化
  • 试玩网站开发国外网站在国内备案
  • 网站开发与iso9001关系王通seo教程
  • 东莞建设网站公司哪家好专业开发小程序公司
  • 自己做网站转发新闻违法么wordpress没有样式表
  • 建设网站课程设计摘要迷糊娃 wordpress 主题
  • 雄安建设集团有限公司网站工业和信息化部反诈中心发短信
  • 呼和浩特网站建设宣传wordpress 主循环
  • 石家庄网站制作找谁asp做的网站怎么发布
  • 做英语网站建站公司成功案例
  • 网站开发 技术问题一个网站的建设需要什么
  • wordpress占用空间网站优化内链怎么做
  • 天津制作公司网站seo营销学校
  • 模仿一个网站建设多少钱深圳市易捷网络科技有限公司
  • 网站推广手段wordpress内容页不显示
  • 成都兼职建设网站海口官网设计公司
  • 网站建设美词原创网站不能上传图片
  • 企顺网网站建设站长之家权重
  • 手机网站设计与实现毕业设计东莞网络展示平台