当前位置: 首页 > news >正文

广告推广平台网站有哪些nas 做网站

广告推广平台网站有哪些,nas 做网站,o2o电商平台系统,湖北营销型网站建设费用创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

创作不易,本篇文章如果帮助到了你,还请点赞 关注支持一下♡>𖥦<)!!
主页专栏有更多知识,如有疑问欢迎大家指正讨论,共同进步!
🔥c++系列专栏:C/C++零基础到精通 🔥

给大家跳段街舞感谢支持!ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ

在这里插入图片描述

c语言内容💖:

专栏:c语言之路重点知识整合

【c语言】全部知识点总结


目录

  • 一、5种渐近意义下的符号
    • 1.渐近上界——大 O 符号
    • 2.渐近下界——大 Ω 符号
    • 3.非渐近紧确上界——小 o 符号
    • 4.非渐近紧确上界——小 ω 符号
    • 5.同界—— Θ 符号
    • 图解
  • 二、有关函数渐近的界的定理
  • 三、取整函数
  • 总结

函数渐近的界可以用来表示函数的边界或范围的集合

可以分为:

  • 上界
  • 同界
  • 下界

一、5种渐近意义下的符号

1.渐近上界——大 O 符号

定义:

设 f 和 g是定义域为自然数集N上的函数。若存在正数 c 和 n0 ,使得 对一切 n > n0有 0 <f(n) < cg(n)成立, 则称f(n) 的渐近的上界是 g(n),记作 f (n) = O(g(n))

例子:

设f(n) = n2 + n,则
f(n)=O(n2),取 c = 2 ,n0 =1 即可
f(n)=O(n3),取 c = 1 ,n0 =2 即可

  1. f (n) = O(g(n)) ,f(n)的阶不高于g(n)的阶.

  2. 可能存在多个正数c,只要指出一个即可.

  3. 对前面有限个值可以不满足不等式.

  4. 常函数可以写作O(1).

上界的阶越低,评估越准确

大O符号可以看作是<=号-------时间复杂度的最坏情况T(max)


2.渐近下界——大 Ω 符号

定义:

设 f 和 g是定义域为自然数集N上的函数。若存在正数 c 和 n0,使得对一切 n > n0有 0 < cg(n) <f(n)成立, 则称f(n) 的渐近的下界是 g(n),记作 f (n) = Ω(g(n))

例子:

设f(n) = n2 + n,则
f(n) = Ω (n2), 取 c = 1, n0 =1即可
f(n) = Ω(100n), 取 c=1/100, n0 =1即可

  1. f (n)=Ω (g(n)),f(n)的阶不低于g(n)的阶.

  2. 可能存在多个正数c,指出一个即可.

  3. 对前面有限个 n 值可以不满足上述不等式.

下界的阶越高,评估越准确

大 Ω 符号可以看作是>=号-------时间复杂度的最好情况T(min)


3.非渐近紧确上界——小 o 符号

定义:

设 f 和g是定义域为自然数集 N上的函数。若对于任意正数 c 都存在 n0,
使得对一切 n > n0有 <f(n) < cg(n)成立, 则记作f (n) = o(g(n))

例子:

f(n)=n2+n,则
f(n)=o(n3)
c>1显然成立,因为n2+n<cn3(n0=2)
任给1>c >0, 取 n0 >「2/c] 即可。因为cn > cn0 > 2 (当n > n0 ) n2+n < 2n2 < cn3

  1. f (n) = o(g(n)) ,f(n)的阶低于g(n)的阶
  2. 对不同正数c, n0不一样. c越小n0越大
  3. 对前面有限个 n 值可以不满足不等式

如果 l i m n → ∞ \underset{n → ∞}{lim} nlim f (n) / g(n)=0,那么f(n) = o(g(n))

小 o 符号可以看作是<号`


4.非渐近紧确上界——小 ω 符号

定义:

设 f 和 g是定义域为自然数集 N上的函数。若对于任意正数 c 都存在 n0 ,使 得对一切 n > n0有
0 < cg(n) <f(n) 成立, 则记作f (n) = ω (g(n))

如果 l i m n → ∞ \underset{n → ∞}{lim} nlim f (n) / g(n)=∞,那么f(n) = ω (g(n))

小 ω 符号可以看作是>号`


5.同界—— Θ 符号

定义:

若f (n) = O (g(n)) 且f (n) = Ω(g(n)), 则记作f (n) = Θ(g(n))

例子:

f(n) =n2+ n, g(n) =100n2 ,那么有f(n)=Θ(g(n))

  1. f(n) 的阶与 g(n) 的阶相等.

  2. 对前面有限个n 值可以不满足条件.

如果 l i m n → ∞ \underset{n → ∞}{lim} nlim f (n) / g(n)存在且等于某个常数,那么f(n) = Θ (g(n))

图解

在这里插入图片描述

二、有关函数渐近的界的定理

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

三、取整函数

在这里插入图片描述

在这里插入图片描述

总结

  • 估计函数的阶的方法:
    计算极限
    阶具有传递性

  • 对数函数的阶低于幂函数的阶,多项 式函数的阶低于指数函数的阶.

  • 算法的时间复杂度是各步操作时间之 和,在常数步的情况下取最高阶的函 数即可.


在这里插入图片描述

大家的点赞、收藏、关注将是我更新的最大动力! 欢迎留言或私信建议或问题。
大家的支持和反馈对我来说意义重大,我会继续不断努力提供有价值的内容!如果本文哪里有错误的地方还请大家多多指出(●'◡'●)
http://www.yayakq.cn/news/321622/

相关文章:

  • 教育网站开发需求wordpress微信注册
  • 网站建设可以入开发成本吗河南阿里巴巴网站建设
  • 三水营销网站开发做商城网站还要服务器
  • 新乡市做网站留言网站建设的报告
  • 电商网站建设价格WordPress两种列表页
  • 网站建设需要写代码吗网站怎么做微信推广
  • 站嗨免费建站系统wordpress小工具 登陆
  • 重庆免费自助建站模板网站分成几种类型
  • 双语网站怎么做wordpress本地环境迁移
  • 个人主页自助建站博客网站开发流程
  • 深圳网站优化wordpress只显示文本摘要
  • 做柱状图 饼状图的网站网站响应时间长
  • .net和php那个做网站好汽车网站建设参考文献开题报告
  • 东莞公司官网建站中国南昌网站建设
  • 企业网站备案要求合肥网站建设培训学校
  • 广州网站备案要审核多久南宁一站网 给网站做营销
  • 新民网站建设价格咨询做网咖的网站
  • 东莞哪家做网站好如何下载网站模板
  • 网站的seo怎么做网上竞价采购网站建设
  • 济南网站seo优化潍坊高新建设局网站
  • 北京网站的建立的徐州市中心做网站的公司招聘
  • 电子商务网站建设需求分析wordpress 复杂 密码
  • 如何制作网站和网页做鞋子的招聘网站有哪些
  • 网站建设站长之家凡科网 免费网站
  • 网站页面设计信息化建设包括网站建设
  • 做国际物流在哪些网站找客户游标卡尺 东莞网站建设
  • 12306网站哪个公司做的推动高质量发展心得体会
  • 网站建设 百科wordpress网站备份还原
  • 省交通建设质安监督局网站wordpress 繁體
  • 网站建设推广怎么玩一个网站做多少关键词