当前位置: 首页 > news >正文

织梦网站必须下载织梦仿站建站网站建设实战

织梦网站必须下载,织梦仿站建站网站建设实战,网络营销实现方式有哪些,河南网站建设推广运营《Towards Black-Box Membership Inference Attack for Diffusion Models》 Abstract 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection不需要访问内部模型组件的新型黑盒攻击方法展示了在评估 DALL-E …

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model’s variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E’s API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

image-20240714153919091

image-20240714154002587

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2xlogp(Xt))+dWt,t[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x, the unbiasedness of the denoised image is not guaranteed.

image-20240715221809436

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]
A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse

image-20240715201536961

image-20240715212401773
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}_t}\epsilon,\quad \hat{z}=\Phi_{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment’s setup in previous papers [5, 18].
target modelDDIMStable Diffusion
version《Are diffusion models vulnerable to membership inference attacks?》original:stable diffusion-v1-5 provided by Huggingface
datasetCIFAR10/100,STL10-Unlabeled,Tiny-Imagenetmember set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T10001000
k10010
baseline methods[5]Are diffusion models vulnerable to membership inference attacks?: SecMIA[18]An efficient membership inference attack for the diffusion model by proximal initialization.[28]Membership inference attacks against diffusion models
publicationInternational Conference on Machine LearningarXiv preprint2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals
http://www.yayakq.cn/news/70365/

相关文章:

  • 江苏住房和城乡建设网站环保部网站官网建设项目限批办法
  • 网站备案大概多久毕业设计微信小程序开发
  • 亚马逊网站怎么做像表白墙的网站
  • wordpress建站指南网站错误代码301
  • 网站可以做软著吗江西建设工程招标投标网站
  • 什么是网站链接优化做网站建设的利润
  • 乐清网站网络公司网站建设实验代码
  • 网站官网建设企业php网站开发 总结
  • 腾讯云的wordpress安装目录网站怎么做免费seo搜索
  • 北京做网站公司有哪些网站优化排名易下拉稳定
  • 哪家购物网站建设好企查查企业信息查询系统官网
  • 深圳网站设计电话网上购物系统源码
  • 网站建设的图片叠加步骤过程电脑网站怎么制作
  • 培训制作网站python 网站建设
  • 做淘客网站怎么样寻找常州微信网站建设
  • 怎么做废品收购网站高陵微网站建设
  • 无锡市滨湖区建设局网站wordpress title tag
  • 自己公司设计一个网站铁岭 网站建设
  • 仿冒网站制作国内免费云服务器
  • 网站设计制作 厂长沙市模板网站
  • 要想用谷歌访问外国网站怎么做网络广告营销特性
  • 网站开发的技术难点中小型门户网站
  • 中国核工业华兴建设有限公司网站奥维网络高端网站建设公司
  • 旅游网站规划设计方案2022注册公司取名
  • 杭州设计网站的公司哪家好上海做响应式网站的公司
  • 网站建设广告图片微信怎么弄公众号
  • 郴州信息港网站网站开发 团队构成
  • 沈阳网站建设建设公司路由器做网站教程
  • 可以做网站的网络nginx 反向代理 wordpress
  • php购物网站设计代码wordpress page 调用