当前位置: 首页 > news >正文

seo做的最好的网站排行专业的郑州网站推广

seo做的最好的网站排行,专业的郑州网站推广,常用的英文网站字体,深圳营销型网站建设公司Swin Transformer 简介 下采样的层级设计,能够逐渐增大感受野。采用window进行注意力计算,极大降低了内存消耗,避免了整张图像尺寸大小的qkv矩阵滑窗操作包括不重叠的 local window,和重叠的 cross-window。不重叠的local window…

Swin Transformer

简介

image-20230321183426196

  • 下采样的层级设计,能够逐渐增大感受野。
  • 采用window进行注意力计算,极大降低了内存消耗,避免了整张图像尺寸大小的qkv矩阵
  • 滑窗操作包括不重叠的 local window,和重叠的 cross-window。不重叠的local windows将注意力计算限制在一个窗口(window size固定),而cross-windows则让不同窗口之间信息可以进行关联,实现了信息的交互。

整体架构

930f1a33661f56ef6e4bb0bab3062769_3_Figure_3

  1. Patch Partition结构:将图像切分重排,并进行embedding
  2. Patch Merging结构:下采样方法,实现层次化结构
  3. Swin Transformer Block:一个W-MSA ,一个SW-MSA,也即是一个window-多头注意力机制和一个shift-windows多头注意力机制,实现将自注意力机制限制在一个windows中进行计算,同时,通过shift-window解决限制在一个windows中后,不同windows之间无信息共享的问题。

Patch Embedding

在图像切分重排中,采用的是使用patch size大小的conv2d进行实现

class PatchEmbed(nn.Module):r""" Image to Patch Embedding图像切分重排Args:img_size (int): Image size.  Default: 224.patch_size (int): Patch token size. Default: 4.in_chans (int): Number of input image channels. Default: 3.embed_dim (int): Number of linear projection output channels. Default: 96.norm_layer (nn.Module, optional): Normalization layer. Default: None"""def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):super().__init__()img_size = to_2tuple(img_size)patch_size = to_2tuple(patch_size)patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]self.img_size = img_sizeself.patch_size = patch_sizeself.patches_resolution = patches_resolutionself.num_patches = patches_resolution[0] * patches_resolution[1]self.in_chans = in_chansself.embed_dim = embed_dimself.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)if norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = Nonedef forward(self, x):B, C, H, W = x.shape# FIXME look at relaxing size constraintsassert H == self.img_size[0] and W == self.img_size[1], \f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw Cif self.norm is not None:x = self.norm(x)return x

Patch Merging

class PatchMerging(nn.Module):r""" Patch Merging Layer.Args:input_resolution (tuple[int]): Resolution of input feature.dim (int): Number of input channels.norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):super().__init__()self.input_resolution = input_resolutionself.dim = dimself.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)self.norm = norm_layer(4 * dim)def forward(self, x):"""x: B, H*W, C"""H, W = self.input_resolutionB, L, C = x.shapeassert L == H * W, "input feature has wrong size"assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."x = x.view(B, H, W, C)x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 Cx1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 Cx2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 Cx3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 Cx = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*Cx = x.view(B, -1, 4 * C)  # B H/2*W/2 4*Cx = self.norm(x)x = self.reduction(x)return x

img

SW-MSA设计

如下所示,w-msa mask避免窗口5和窗口3进行相似度计算,通过mask只在窗口内部进行计算。

通过对特征图移位,并给Attention设置mask来间接实现的。能在保持原有的window个数下,最后的计算结果等价

2023-11-18_10-20-26

2023-11-18_10-23-41

Window Attention

A t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K T d + B ) V Attention(Q,K,V)=Softmax(\frac{QK^T}{\sqrt{d}}+B)V Attention(Q,K,V)=Softmax(d QKT+B)V

相对位置编码

coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)

img

对于相对位置编码,在2维坐标系中,当偏移从0开始时,(2,1)和(1,2)相对(0,0)的位置编码是不同的,而转为1维坐标后,却是相同数值,为了解决这个问题,采用对x坐标2 * self.window_size[1] - 1操作,从而进行区分。而该相对位置编码需要2 * self.window_size[1] - 1编码数值。

A Survey of Transformers

图解Swin Transformer - 知乎 (zhihu.com)

http://www.yayakq.cn/news/39192/

相关文章:

  • 网站建设的专业性对搜索引擎营销的影响深做网站公司
  • 电商网站建设网中国网络平台排名前十
  • 龙岩做网站开发哪家做的好03340网站建设与管理
  • 中山网站建设方案报价携程做旅游的网站
  • 定制美瞳网站建设土木工程毕业设计网站
  • 哪里有服务好的网站建设dede手机网站模板修改
  • 用html建设网站网站空间企业个人
  • 江苏专业的网站建设品牌内容包括哪些
  • 厦门本地企业网站建设网页设计论文的研究内容
  • 创建一个网站需要做哪些工作山东公路建设集团网站
  • 网站建设公司天强科技wordpress 首页模块
  • 网站建设业务流程图wordpress 关闭搜索引擎
  • 网站建设意见征求汇报威海企业做网站哪家好
  • 金融产品做网站推广专业制作网站价格
  • 一个人做网站原型美食推广平台有哪些
  • 移动网站 图片优化微信开放平台注册流程
  • 有备案号的网站是公司的吗华池网站建设
  • 网站建设维护项目中国万网提供的服务和收费情况
  • 协会网站建设模板株洲市做公司官方网站
  • 合肥 电子商务 网站推广矿产网站建设价格
  • 外贸网站怎么做seo优化影视网站wordpress
  • 个人网站建设论文绪论seo整站优化方案案例
  • 网站建设课程中的收获wordpress简化注册
  • 酉阳网站建设太和县住房和城乡建设局网站
  • 企业网站建设一般包含哪些内容受欢迎的永州网站建设
  • dw自己做网站需要什么意思谷歌商店app下载
  • 如何开wordpress网站找人做ps的网站
  • 技术难度高的网站开发网站开发难点
  • 游戏发卡中心网站源码wordpress文章链接跳转
  • 24什么网站建设开发一个相亲软件需要多少钱